Optimal. Leaf size=24 \[ 2 \left (4+e^5+\frac {x}{e^{e^{x^2}}-x^3}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.84, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x^3+e^{e^{x^2}} \left (2-4 e^{x^2} x^2\right )}{e^{2 e^{x^2}}-2 e^{e^{x^2}} x^3+x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x^3+e^{e^{x^2}} \left (2-4 e^{x^2} x^2\right )}{\left (e^{e^{x^2}}-x^3\right )^2} \, dx\\ &=\int \left (-\frac {4 e^{e^{x^2}+x^2} x^2}{\left (e^{e^{x^2}}-x^3\right )^2}+\frac {2 \left (e^{e^{x^2}}+2 x^3\right )}{\left (e^{e^{x^2}}-x^3\right )^2}\right ) \, dx\\ &=2 \int \frac {e^{e^{x^2}}+2 x^3}{\left (e^{e^{x^2}}-x^3\right )^2} \, dx-4 \int \frac {e^{e^{x^2}+x^2} x^2}{\left (e^{e^{x^2}}-x^3\right )^2} \, dx\\ &=2 \int \left (\frac {1}{e^{e^{x^2}}-x^3}+\frac {3 x^3}{\left (-e^{e^{x^2}}+x^3\right )^2}\right ) \, dx-4 \int \frac {e^{e^{x^2}+x^2} x^2}{\left (e^{e^{x^2}}-x^3\right )^2} \, dx\\ &=2 \int \frac {1}{e^{e^{x^2}}-x^3} \, dx-4 \int \frac {e^{e^{x^2}+x^2} x^2}{\left (e^{e^{x^2}}-x^3\right )^2} \, dx+6 \int \frac {x^3}{\left (-e^{e^{x^2}}+x^3\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 18, normalized size = 0.75 \begin {gather*} \frac {2 x}{e^{e^{x^2}}-x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 16, normalized size = 0.67 \begin {gather*} -\frac {2 \, x}{x^{3} - e^{\left (e^{\left (x^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 16, normalized size = 0.67 \begin {gather*} -\frac {2 \, x}{x^{3} - e^{\left (e^{\left (x^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.71
method | result | size |
risch | \(-\frac {2 x}{x^{3}-{\mathrm e}^{{\mathrm e}^{x^{2}}}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 16, normalized size = 0.67 \begin {gather*} -\frac {2 \, x}{x^{3} - e^{\left (e^{\left (x^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.86, size = 16, normalized size = 0.67 \begin {gather*} \frac {2\,x}{{\mathrm {e}}^{{\mathrm {e}}^{x^2}}-x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 12, normalized size = 0.50 \begin {gather*} \frac {2 x}{- x^{3} + e^{e^{x^{2}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________