Optimal. Leaf size=27 \[ 2 e^{3+4 x^2-\frac {4 \left (x+4 \log ^2(x)\right )}{x}} x^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.05, antiderivative size = 75, normalized size of antiderivative = 2.78, number of steps used = 1, number of rules used = 1, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {2288} \begin {gather*} -\frac {16 e^{-\frac {-4 x^3+x+16 \log ^2(x)}{x}} \left (x^3+2 \log ^2(x)-4 \log (x)\right )}{\frac {-12 x^2+\frac {32 \log (x)}{x}+1}{x}-\frac {-4 x^3+x+16 \log ^2(x)}{x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {16 e^{-\frac {x-4 x^3+16 \log ^2(x)}{x}} \left (x^3-4 \log (x)+2 \log ^2(x)\right )}{\frac {1-12 x^2+\frac {32 \log (x)}{x}}{x}-\frac {x-4 x^3+16 \log ^2(x)}{x^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 23, normalized size = 0.85 \begin {gather*} 2 e^{-1+4 x^2-\frac {16 \log ^2(x)}{x}} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.15, size = 25, normalized size = 0.93 \begin {gather*} 2 \, x^{2} e^{\left (\frac {4 \, x^{3} - 16 \, \log \relax (x)^{2} - x}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 25, normalized size = 0.93 \begin {gather*} 2 \, x^{2} e^{\left (\frac {4 \, x^{3} - 16 \, \log \relax (x)^{2} - x}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 25, normalized size = 0.93
method | result | size |
risch | \(2 x^{2} {\mathrm e}^{-\frac {-4 x^{3}+16 \ln \relax (x )^{2}+x}{x}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 22, normalized size = 0.81 \begin {gather*} 2 \, x^{2} e^{\left (4 \, x^{2} - \frac {16 \, \log \relax (x)^{2}}{x} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.61, size = 23, normalized size = 0.85 \begin {gather*} 2\,x^2\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^{4\,x^2}\,{\mathrm {e}}^{-\frac {16\,{\ln \relax (x)}^2}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 20, normalized size = 0.74 \begin {gather*} 2 x^{2} e^{\frac {4 x^{3} - x - 16 \log {\relax (x )}^{2}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________