Optimal. Leaf size=17 \[ \frac {2 \left (e^7+x\right )}{\log \left (e^x-x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 e^7+e^x \left (-2 e^7-2 x\right )+2 x+\left (2 e^x-2 x\right ) \log \left (e^x-x\right )}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 (-1+x) \left (e^7+x\right )}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )}-\frac {2 \left (e^7+x-\log \left (e^x-x\right )\right )}{\log ^2\left (e^x-x\right )}\right ) \, dx\\ &=-\left (2 \int \frac {(-1+x) \left (e^7+x\right )}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )} \, dx\right )-2 \int \frac {e^7+x-\log \left (e^x-x\right )}{\log ^2\left (e^x-x\right )} \, dx\\ &=-\left (2 \int \left (-\frac {e^7}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )}+\frac {\left (-1+e^7\right ) x}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )}+\frac {x^2}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )}\right ) \, dx\right )-2 \int \left (\frac {e^7+x}{\log ^2\left (e^x-x\right )}-\frac {1}{\log \left (e^x-x\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x^2}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )} \, dx\right )-2 \int \frac {e^7+x}{\log ^2\left (e^x-x\right )} \, dx+2 \int \frac {1}{\log \left (e^x-x\right )} \, dx+\left (2 e^7\right ) \int \frac {1}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )} \, dx+\left (2 \left (1-e^7\right )\right ) \int \frac {x}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )} \, dx\\ &=-\left (2 \int \left (\frac {e^7}{\log ^2\left (e^x-x\right )}+\frac {x}{\log ^2\left (e^x-x\right )}\right ) \, dx\right )-2 \int \frac {x^2}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )} \, dx+2 \int \frac {1}{\log \left (e^x-x\right )} \, dx+\left (2 e^7\right ) \int \frac {1}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )} \, dx+\left (2 \left (1-e^7\right )\right ) \int \frac {x}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )} \, dx\\ &=-\left (2 \int \frac {x}{\log ^2\left (e^x-x\right )} \, dx\right )-2 \int \frac {x^2}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )} \, dx+2 \int \frac {1}{\log \left (e^x-x\right )} \, dx-\left (2 e^7\right ) \int \frac {1}{\log ^2\left (e^x-x\right )} \, dx+\left (2 e^7\right ) \int \frac {1}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )} \, dx+\left (2 \left (1-e^7\right )\right ) \int \frac {x}{\left (e^x-x\right ) \log ^2\left (e^x-x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 17, normalized size = 1.00 \begin {gather*} \frac {2 \left (e^7+x\right )}{\log \left (e^x-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 15, normalized size = 0.88 \begin {gather*} \frac {2 \, {\left (x + e^{7}\right )}}{\log \left (-x + e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 15, normalized size = 0.88 \begin {gather*} \frac {2 \, {\left (x + e^{7}\right )}}{\log \left (-x + e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 16, normalized size = 0.94
method | result | size |
risch | \(\frac {2 \,{\mathrm e}^{7}+2 x}{\ln \left ({\mathrm e}^{x}-x \right )}\) | \(16\) |
norman | \(\frac {2 \,{\mathrm e}^{7}+2 x}{\ln \left ({\mathrm e}^{x}-x \right )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 15, normalized size = 0.88 \begin {gather*} \frac {2 \, {\left (x + e^{7}\right )}}{\log \left (-x + e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.56, size = 15, normalized size = 0.88 \begin {gather*} \frac {2\,\left (x+{\mathrm {e}}^7\right )}{\ln \left ({\mathrm {e}}^x-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 14, normalized size = 0.82 \begin {gather*} \frac {2 x + 2 e^{7}}{\log {\left (- x + e^{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________