Optimal. Leaf size=29 \[ x+x \log \left (\frac {3+e^{10}+e^x}{(-3+x) \left (5+e^{e^5}+x\right )}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 7.46, antiderivative size = 261, normalized size of antiderivative = 9.00, number of steps used = 30, number of rules used = 12, integrand size = 209, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {6688, 6742, 2184, 2190, 2279, 2391, 36, 31, 72, 893, 2548, 1612} \begin {gather*} -\left (2+e^{e^5}\right ) x+e^{e^5} x+3 x+x \log \left (-\frac {e^x+3+e^{10}}{(3-x) \left (x+e^{e^5}+5\right )}\right )-\frac {3 e^{e^5} \log (3-x)}{8+e^{e^5}}-\frac {24 \log (3-x)}{8+e^{e^5}}+3 \log (3-x)-\frac {e^{e^5} \left (37+13 e^{e^5}+e^{2 e^5}\right ) \log \left (x+e^{e^5}+5\right )}{8+e^{e^5}}+\frac {\left (5+e^{e^5}\right )^3 \log \left (x+e^{e^5}+5\right )}{8+e^{e^5}}-\frac {\left (5+e^{e^5}\right )^2 \log \left (x+e^{e^5}+5\right )}{8+e^{e^5}}-\frac {15 \left (5+e^{e^5}\right ) \log \left (x+e^{e^5}+5\right )}{8+e^{e^5}}+\frac {15 \log \left (x+e^{e^5}+5\right )}{8+e^{e^5}}-\left (5+e^{e^5}\right ) \log \left (x+e^{e^5}+5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 36
Rule 72
Rule 893
Rule 1612
Rule 2184
Rule 2190
Rule 2279
Rule 2391
Rule 2548
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {45+3 x^2+e^{10} \left (15+x^2\right )-e^x \left (-15-15 x+x^2+x^3\right )-e^{e^5} \left (-9-3 e^{10}+e^x \left (-3-3 x+x^2\right )\right )-\left (3+e^{10}+e^x\right ) (-3+x) \left (5+e^{e^5}+x\right ) \log \left (\frac {3+e^{10}+e^x}{(-3+x) \left (5+e^{e^5}+x\right )}\right )}{\left (e^x+3 \left (1+\frac {e^{10}}{3}\right )\right ) (3-x) \left (5+e^{e^5}+x\right )} \, dx\\ &=\int \left (\frac {\left (-3-e^{10}\right ) x}{e^x+3 \left (1+\frac {e^{10}}{3}\right )}+\frac {15 \left (1+\frac {e^{e^5}}{5}\right )+15 \left (1+\frac {e^{e^5}}{5}\right ) x-\left (1+e^{e^5}\right ) x^2-x^3+15 \left (1+\frac {e^{e^5}}{5}\right ) \log \left (\frac {3+e^{10}+e^x}{(-3+x) \left (5+e^{e^5}+x\right )}\right )-2 \left (1+\frac {e^{e^5}}{2}\right ) x \log \left (\frac {3+e^{10}+e^x}{(-3+x) \left (5+e^{e^5}+x\right )}\right )-x^2 \log \left (\frac {3+e^{10}+e^x}{(-3+x) \left (5+e^{e^5}+x\right )}\right )}{(3-x) \left (5+e^{e^5}+x\right )}\right ) \, dx\\ &=\left (-3-e^{10}\right ) \int \frac {x}{e^x+3 \left (1+\frac {e^{10}}{3}\right )} \, dx+\int \frac {15 \left (1+\frac {e^{e^5}}{5}\right )+15 \left (1+\frac {e^{e^5}}{5}\right ) x-\left (1+e^{e^5}\right ) x^2-x^3+15 \left (1+\frac {e^{e^5}}{5}\right ) \log \left (\frac {3+e^{10}+e^x}{(-3+x) \left (5+e^{e^5}+x\right )}\right )-2 \left (1+\frac {e^{e^5}}{2}\right ) x \log \left (\frac {3+e^{10}+e^x}{(-3+x) \left (5+e^{e^5}+x\right )}\right )-x^2 \log \left (\frac {3+e^{10}+e^x}{(-3+x) \left (5+e^{e^5}+x\right )}\right )}{(3-x) \left (5+e^{e^5}+x\right )} \, dx\\ &=-\frac {x^2}{2}+\int \frac {e^x x}{e^x+3 \left (1+\frac {e^{10}}{3}\right )} \, dx+\int \frac {15+15 x-x^2-x^3-e^{e^5} \left (-3-3 x+x^2\right )-(-3+x) \left (5+e^{e^5}+x\right ) \log \left (\frac {3+e^{10}+e^x}{(-3+x) \left (5+e^{e^5}+x\right )}\right )}{(3-x) \left (5+e^{e^5}+x\right )} \, dx\\ &=-\frac {x^2}{2}+x \log \left (1+\frac {e^x}{3+e^{10}}\right )-\int \log \left (1+\frac {e^x}{3 \left (1+\frac {e^{10}}{3}\right )}\right ) \, dx+\int \left (-\frac {15}{(-3+x) \left (5+e^{e^5}+x\right )}-\frac {15 x}{(-3+x) \left (5+e^{e^5}+x\right )}+\frac {x^2}{(-3+x) \left (5+e^{e^5}+x\right )}+\frac {x^3}{(-3+x) \left (5+e^{e^5}+x\right )}+\frac {e^{e^5} \left (-3-3 x+x^2\right )}{(-3+x) \left (5+e^{e^5}+x\right )}+\log \left (\frac {e^x+3 \left (1+\frac {e^{10}}{3}\right )}{(-3+x) \left (5+e^{e^5}+x\right )}\right )\right ) \, dx\\ &=-\frac {x^2}{2}+x \log \left (1+\frac {e^x}{3+e^{10}}\right )-15 \int \frac {1}{(-3+x) \left (5+e^{e^5}+x\right )} \, dx-15 \int \frac {x}{(-3+x) \left (5+e^{e^5}+x\right )} \, dx+e^{e^5} \int \frac {-3-3 x+x^2}{(-3+x) \left (5+e^{e^5}+x\right )} \, dx+\int \frac {x^2}{(-3+x) \left (5+e^{e^5}+x\right )} \, dx+\int \frac {x^3}{(-3+x) \left (5+e^{e^5}+x\right )} \, dx+\int \log \left (\frac {e^x+3 \left (1+\frac {e^{10}}{3}\right )}{(-3+x) \left (5+e^{e^5}+x\right )}\right ) \, dx-\operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{3 \left (1+\frac {e^{10}}{3}\right )}\right )}{x} \, dx,x,e^x\right )\\ &=-\frac {x^2}{2}+x \log \left (1+\frac {e^x}{3+e^{10}}\right )+x \log \left (-\frac {3+e^{10}+e^x}{(3-x) \left (5+e^{e^5}+x\right )}\right )+\text {Li}_2\left (-\frac {e^x}{3+e^{10}}\right )-15 \int \left (\frac {3}{\left (8+e^{e^5}\right ) (-3+x)}+\frac {5+e^{e^5}}{\left (8+e^{e^5}\right ) \left (5+e^{e^5}+x\right )}\right ) \, dx+e^{e^5} \int \left (1-\frac {3}{\left (8+e^{e^5}\right ) (-3+x)}-\frac {37+13 e^{e^5}+e^{2 e^5}}{\left (8+e^{e^5}\right ) \left (5+e^{e^5}+x\right )}\right ) \, dx-\frac {15 \int \frac {1}{-3+x} \, dx}{8+e^{e^5}}+\frac {15 \int \frac {1}{5+e^{e^5}+x} \, dx}{8+e^{e^5}}+\int \left (1+\frac {9}{\left (8+e^{e^5}\right ) (-3+x)}-\frac {\left (5+e^{e^5}\right )^2}{\left (8+e^{e^5}\right ) \left (5+e^{e^5}+x\right )}\right ) \, dx+\int \left (-2 \left (1+\frac {e^{e^5}}{2}\right )+\frac {27}{\left (8+e^{e^5}\right ) (-3+x)}+x+\frac {\left (5+e^{e^5}\right )^3}{\left (8+e^{e^5}\right ) \left (5+e^{e^5}+x\right )}\right ) \, dx-\int \frac {x \left (3 e^{e^5} \left (1+\frac {e^{10}}{3}\right )-e^{e^5+x} (-4+x)+6 \left (1+\frac {e^{10}}{3}\right ) (1+x)-e^x \left (-17+x^2\right )\right )}{\left (e^x+3 \left (1+\frac {e^{10}}{3}\right )\right ) (3-x) \left (5+e^{e^5}+x\right )} \, dx\\ &=x+e^{e^5} x-\left (2+e^{e^5}\right ) x+x \log \left (1+\frac {e^x}{3+e^{10}}\right )-\frac {24 \log (3-x)}{8+e^{e^5}}-\frac {3 e^{e^5} \log (3-x)}{8+e^{e^5}}+x \log \left (-\frac {3+e^{10}+e^x}{(3-x) \left (5+e^{e^5}+x\right )}\right )+\frac {15 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {15 \left (5+e^{e^5}\right ) \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {\left (5+e^{e^5}\right )^2 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}+\frac {\left (5+e^{e^5}\right )^3 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {e^{e^5} \left (37+13 e^{e^5}+e^{2 e^5}\right ) \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}+\text {Li}_2\left (-\frac {e^x}{3+e^{10}}\right )-\int \left (\frac {\left (-3-e^{10}\right ) x}{e^x+3 \left (1+\frac {e^{10}}{3}\right )}+\frac {x \left (-17-4 e^{e^5}+e^{e^5} x+x^2\right )}{(-3+x) \left (5+e^{e^5}+x\right )}\right ) \, dx\\ &=x+e^{e^5} x-\left (2+e^{e^5}\right ) x+x \log \left (1+\frac {e^x}{3+e^{10}}\right )-\frac {24 \log (3-x)}{8+e^{e^5}}-\frac {3 e^{e^5} \log (3-x)}{8+e^{e^5}}+x \log \left (-\frac {3+e^{10}+e^x}{(3-x) \left (5+e^{e^5}+x\right )}\right )+\frac {15 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {15 \left (5+e^{e^5}\right ) \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {\left (5+e^{e^5}\right )^2 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}+\frac {\left (5+e^{e^5}\right )^3 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {e^{e^5} \left (37+13 e^{e^5}+e^{2 e^5}\right ) \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}+\text {Li}_2\left (-\frac {e^x}{3+e^{10}}\right )-\left (-3-e^{10}\right ) \int \frac {x}{e^x+3 \left (1+\frac {e^{10}}{3}\right )} \, dx-\int \frac {x \left (-17-4 e^{e^5}+e^{e^5} x+x^2\right )}{(-3+x) \left (5+e^{e^5}+x\right )} \, dx\\ &=x+e^{e^5} x-\left (2+e^{e^5}\right ) x+\frac {x^2}{2}+x \log \left (1+\frac {e^x}{3+e^{10}}\right )-\frac {24 \log (3-x)}{8+e^{e^5}}-\frac {3 e^{e^5} \log (3-x)}{8+e^{e^5}}+x \log \left (-\frac {3+e^{10}+e^x}{(3-x) \left (5+e^{e^5}+x\right )}\right )+\frac {15 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {15 \left (5+e^{e^5}\right ) \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {\left (5+e^{e^5}\right )^2 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}+\frac {\left (5+e^{e^5}\right )^3 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {e^{e^5} \left (37+13 e^{e^5}+e^{2 e^5}\right ) \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}+\text {Li}_2\left (-\frac {e^x}{3+e^{10}}\right )-\int \frac {e^x x}{e^x+3 \left (1+\frac {e^{10}}{3}\right )} \, dx-\int \left (-2-\frac {3}{-3+x}+x+\frac {5+e^{e^5}}{5+e^{e^5}+x}\right ) \, dx\\ &=3 x+e^{e^5} x-\left (2+e^{e^5}\right ) x+3 \log (3-x)-\frac {24 \log (3-x)}{8+e^{e^5}}-\frac {3 e^{e^5} \log (3-x)}{8+e^{e^5}}+x \log \left (-\frac {3+e^{10}+e^x}{(3-x) \left (5+e^{e^5}+x\right )}\right )-\left (5+e^{e^5}\right ) \log \left (5+e^{e^5}+x\right )+\frac {15 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {15 \left (5+e^{e^5}\right ) \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {\left (5+e^{e^5}\right )^2 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}+\frac {\left (5+e^{e^5}\right )^3 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {e^{e^5} \left (37+13 e^{e^5}+e^{2 e^5}\right ) \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}+\text {Li}_2\left (-\frac {e^x}{3+e^{10}}\right )+\int \log \left (1+\frac {e^x}{3 \left (1+\frac {e^{10}}{3}\right )}\right ) \, dx\\ &=3 x+e^{e^5} x-\left (2+e^{e^5}\right ) x+3 \log (3-x)-\frac {24 \log (3-x)}{8+e^{e^5}}-\frac {3 e^{e^5} \log (3-x)}{8+e^{e^5}}+x \log \left (-\frac {3+e^{10}+e^x}{(3-x) \left (5+e^{e^5}+x\right )}\right )-\left (5+e^{e^5}\right ) \log \left (5+e^{e^5}+x\right )+\frac {15 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {15 \left (5+e^{e^5}\right ) \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {\left (5+e^{e^5}\right )^2 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}+\frac {\left (5+e^{e^5}\right )^3 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {e^{e^5} \left (37+13 e^{e^5}+e^{2 e^5}\right ) \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}+\text {Li}_2\left (-\frac {e^x}{3+e^{10}}\right )+\operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{3 \left (1+\frac {e^{10}}{3}\right )}\right )}{x} \, dx,x,e^x\right )\\ &=3 x+e^{e^5} x-\left (2+e^{e^5}\right ) x+3 \log (3-x)-\frac {24 \log (3-x)}{8+e^{e^5}}-\frac {3 e^{e^5} \log (3-x)}{8+e^{e^5}}+x \log \left (-\frac {3+e^{10}+e^x}{(3-x) \left (5+e^{e^5}+x\right )}\right )-\left (5+e^{e^5}\right ) \log \left (5+e^{e^5}+x\right )+\frac {15 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {15 \left (5+e^{e^5}\right ) \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {\left (5+e^{e^5}\right )^2 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}+\frac {\left (5+e^{e^5}\right )^3 \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}-\frac {e^{e^5} \left (37+13 e^{e^5}+e^{2 e^5}\right ) \log \left (5+e^{e^5}+x\right )}{8+e^{e^5}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 29, normalized size = 1.00 \begin {gather*} x+x \log \left (\frac {3+e^{10}+e^x}{(-3+x) \left (5+e^{e^5}+x\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 29, normalized size = 1.00 \begin {gather*} x \log \left (\frac {e^{10} + e^{x} + 3}{x^{2} + {\left (x - 3\right )} e^{\left (e^{5}\right )} + 2 \, x - 15}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {3 \, x^{2} + {\left (x^{2} + 15\right )} e^{10} - {\left (x^{3} + x^{2} - 15 \, x - 15\right )} e^{x} - {\left ({\left (x^{2} - 3 \, x - 3\right )} e^{x} - 3 \, e^{10} - 9\right )} e^{\left (e^{5}\right )} - {\left (3 \, x^{2} + {\left (x^{2} + 2 \, x - 15\right )} e^{10} + {\left (x^{2} + 2 \, x - 15\right )} e^{x} + {\left ({\left (x - 3\right )} e^{10} + {\left (x - 3\right )} e^{x} + 3 \, x - 9\right )} e^{\left (e^{5}\right )} + 6 \, x - 45\right )} \log \left (\frac {e^{10} + e^{x} + 3}{x^{2} + {\left (x - 3\right )} e^{\left (e^{5}\right )} + 2 \, x - 15}\right ) + 45}{3 \, x^{2} + {\left (x^{2} + 2 \, x - 15\right )} e^{10} + {\left (x^{2} + 2 \, x - 15\right )} e^{x} + {\left ({\left (x - 3\right )} e^{10} + {\left (x - 3\right )} e^{x} + 3 \, x - 9\right )} e^{\left (e^{5}\right )} + 6 \, x - 45}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 1.57, size = 32, normalized size = 1.10
method | result | size |
norman | \(x +x \ln \left (\frac {{\mathrm e}^{x}+{\mathrm e}^{10}+3}{\left (x -3\right ) {\mathrm e}^{{\mathrm e}^{5}}+x^{2}+2 x -15}\right )\) | \(32\) |
risch | \(x \ln \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )-x \ln \left (x +{\mathrm e}^{{\mathrm e}^{5}}+5\right )-\ln \left (x -3\right ) x -\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x -3}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )}{x +{\mathrm e}^{{\mathrm e}^{5}}+5}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )}{\left (x -3\right ) \left (x +{\mathrm e}^{{\mathrm e}^{5}}+5\right )}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x -3}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )}{\left (x -3\right ) \left (x +{\mathrm e}^{{\mathrm e}^{5}}+5\right )}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x +{\mathrm e}^{{\mathrm e}^{5}}+5}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )}{x +{\mathrm e}^{{\mathrm e}^{5}}+5}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x +{\mathrm e}^{{\mathrm e}^{5}}+5}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )}{x +{\mathrm e}^{{\mathrm e}^{5}}+5}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )}{x +{\mathrm e}^{{\mathrm e}^{5}}+5}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )}{x +{\mathrm e}^{{\mathrm e}^{5}}+5}\right )^{3}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )}{x +{\mathrm e}^{{\mathrm e}^{5}}+5}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )}{\left (x -3\right ) \left (x +{\mathrm e}^{{\mathrm e}^{5}}+5\right )}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+{\mathrm e}^{10}+3\right )}{\left (x -3\right ) \left (x +{\mathrm e}^{{\mathrm e}^{5}}+5\right )}\right )^{3}}{2}+x\) | \(343\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 28, normalized size = 0.97 \begin {gather*} -x \log \left (x + e^{\left (e^{5}\right )} + 5\right ) - x \log \left (x - 3\right ) + x \log \left (e^{10} + e^{x} + 3\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.57, size = 29, normalized size = 1.00 \begin {gather*} x\,\left (\ln \left (\frac {{\mathrm {e}}^{10}+{\mathrm {e}}^x+3}{2\,x+{\mathrm {e}}^{{\mathrm {e}}^5}\,\left (x-3\right )+x^2-15}\right )+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.79, size = 88, normalized size = 3.03 \begin {gather*} x + \left (x + \frac {1}{3} + \frac {e^{e^{5}}}{6}\right ) \log {\left (\frac {e^{x} + 3 + e^{10}}{x^{2} + 2 x + \left (x - 3\right ) e^{e^{5}} - 15} \right )} - \frac {\left (2 + e^{e^{5}}\right ) \log {\left (e^{x} + 3 + e^{10} \right )}}{6} + \frac {\left (2 + e^{e^{5}}\right ) \log {\left (x^{2} + x \left (2 + e^{e^{5}}\right ) - 3 e^{e^{5}} - 15 \right )}}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________