Optimal. Leaf size=17 \[ \log \left (\log \left (12 \left (\frac {e^2}{x}+2025 x^4\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 16, normalized size of antiderivative = 0.94, number of steps used = 2, number of rules used = 2, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {1593, 6684} \begin {gather*} \log \left (\log \left (24300 x^4+\frac {12 e^2}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^2+8100 x^5}{x \left (e^2+2025 x^5\right ) \log \left (\frac {12 e^2}{x}+24300 x^4\right )} \, dx\\ &=\log \left (\log \left (\frac {12 e^2}{x}+24300 x^4\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 16, normalized size = 0.94 \begin {gather*} \log \left (\log \left (\frac {12 \left (e^2+2025 x^5\right )}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 15, normalized size = 0.88 \begin {gather*} \log \left (\log \left (\frac {12 \, {\left (2025 \, x^{5} + e^{2}\right )}}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 17, normalized size = 1.00 \begin {gather*} \log \left (\log \left (12\right ) + \log \left (2025 \, x^{5} + e^{2}\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 16, normalized size = 0.94
method | result | size |
norman | \(\ln \left (\ln \left (\frac {12 \,{\mathrm e}^{2}}{x}+24300 x^{4}\right )\right )\) | \(16\) |
risch | \(\ln \left (\ln \left (\frac {12 \,{\mathrm e}^{2}}{x}+24300 x^{4}\right )\right )\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 21, normalized size = 1.24 \begin {gather*} \log \left (\log \relax (3) + 2 \, \log \relax (2) + \log \left (2025 \, x^{5} + e^{2}\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.83, size = 15, normalized size = 0.88 \begin {gather*} \ln \left (\ln \left (\frac {12\,{\mathrm {e}}^2}{x}+24300\,x^4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 14, normalized size = 0.82 \begin {gather*} \log {\left (\log {\left (24300 x^{4} + \frac {12 e^{2}}{x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________