Optimal. Leaf size=32 \[ x \left (e^6+5 \left (-e^{-5-x+e^2 x}+\frac {12}{x}-\log (x)\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.06, antiderivative size = 81, normalized size of antiderivative = 2.53, number of steps used = 6, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {6, 2187, 2176, 2194, 2295} \begin {gather*} -\left (5-e^6\right ) x+5 x+\frac {5 e^{-\left (\left (1-e^2\right ) x\right )-5} \left (1-\left (1-e^2\right ) x\right )}{1-e^2}-\frac {5 e^{-\left (\left (1-e^2\right ) x\right )-5}}{1-e^2}-5 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2176
Rule 2187
Rule 2194
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (5-e^6\right ) x\right )-5 \int \log (x) \, dx+\int e^{-5-x+e^2 x} \left (-5+5 x-5 e^2 x\right ) \, dx\\ &=5 x-\left (5-e^6\right ) x-5 x \log (x)+\int e^{-5-x+e^2 x} \left (-5+\left (5-5 e^2\right ) x\right ) \, dx\\ &=5 x-\left (5-e^6\right ) x-5 x \log (x)+\int e^{-5-\left (1-e^2\right ) x} \left (-5+5 \left (1-e^2\right ) x\right ) \, dx\\ &=5 x-\left (5-e^6\right ) x+\frac {5 e^{-5-\left (1-e^2\right ) x} \left (1-\left (1-e^2\right ) x\right )}{1-e^2}-5 x \log (x)+5 \int e^{-5+\left (-1+e^2\right ) x} \, dx\\ &=-\frac {5 e^{-5-\left (1-e^2\right ) x}}{1-e^2}+5 x-\left (5-e^6\right ) x+\frac {5 e^{-5-\left (1-e^2\right ) x} \left (1-\left (1-e^2\right ) x\right )}{1-e^2}-5 x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 25, normalized size = 0.78 \begin {gather*} e^6 x-5 e^{-5+\left (-1+e^2\right ) x} x-5 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 23, normalized size = 0.72 \begin {gather*} x e^{6} - 5 \, x e^{\left (x e^{2} - x - 5\right )} - 5 \, x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 75, normalized size = 2.34 \begin {gather*} x e^{6} - 5 \, x \log \relax (x) - \frac {5 \, {\left (x e^{2} - x - 1\right )} e^{\left (x e^{2} - x - 3\right )}}{e^{4} - 2 \, e^{2} + 1} + \frac {5 \, {\left (x e^{2} - x - e^{2}\right )} e^{\left (x e^{2} - x - 5\right )}}{e^{4} - 2 \, e^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 0.75
method | result | size |
norman | \(x \,{\mathrm e}^{6}-5 x \ln \relax (x )-5 \,{\mathrm e}^{{\mathrm e}^{2} x -x -5} x\) | \(24\) |
risch | \(x \,{\mathrm e}^{6}-5 x \ln \relax (x )-5 \,{\mathrm e}^{{\mathrm e}^{2} x -x -5} x\) | \(24\) |
default | \(\frac {\frac {5 \left ({\mathrm e}^{-5+\left ({\mathrm e}^{2}-1\right ) x} \left (-5+\left ({\mathrm e}^{2}-1\right ) x \right )-{\mathrm e}^{-5+\left ({\mathrm e}^{2}-1\right ) x}\right )}{{\mathrm e}^{2}-1}+\frac {25 \,{\mathrm e}^{-5+\left ({\mathrm e}^{2}-1\right ) x}}{{\mathrm e}^{2}-1}-\frac {25 \,{\mathrm e}^{-5+\left ({\mathrm e}^{2}-1\right ) x} {\mathrm e}^{2}}{{\mathrm e}^{2}-1}-\frac {5 \,{\mathrm e}^{2} \left ({\mathrm e}^{-5+\left ({\mathrm e}^{2}-1\right ) x} \left (-5+\left ({\mathrm e}^{2}-1\right ) x \right )-{\mathrm e}^{-5+\left ({\mathrm e}^{2}-1\right ) x}\right )}{{\mathrm e}^{2}-1}-5 \,{\mathrm e}^{-5+\left ({\mathrm e}^{2}-1\right ) x}}{{\mathrm e}^{2}-1}-5 x \ln \relax (x )+x \,{\mathrm e}^{6}\) | \(144\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 23, normalized size = 0.72 \begin {gather*} x e^{6} - 5 \, x e^{\left (x e^{2} - x - 5\right )} - 5 \, x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.52, size = 24, normalized size = 0.75 \begin {gather*} x\,{\mathrm {e}}^6-5\,x\,\ln \relax (x)-5\,x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-5}\,{\mathrm {e}}^{x\,{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 24, normalized size = 0.75 \begin {gather*} - 5 x e^{- x + x e^{2} - 5} - 5 x \log {\relax (x )} + x e^{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________