Optimal. Leaf size=33 \[ \frac {1}{4} e^{e^{\frac {1}{4} e^{\frac {e^{e^{e^{-x} x}}+3 x}{x}}}} \]
________________________________________________________________________________________
Rubi [F] time = 10.05, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{\frac {1}{2} e^{\frac {e^{e^{e^{-x} x}}+3 x-x \log (2)}{x}}}+e^{e^{-x} x}+\frac {1}{2} e^{\frac {e^{e^{e^{-x} x}}+3 x-x \log (2)}{x}}+\frac {e^{e^{e^{-x} x}}+3 x-x \log (2)}{x}\right ) \left (-1+e^{-x+e^{-x} x} (1-x) x\right )}{8 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \frac {\exp \left (e^{\frac {1}{2} e^{\frac {e^{e^{e^{-x} x}}+3 x-x \log (2)}{x}}}+e^{e^{-x} x}+\frac {1}{2} e^{\frac {e^{e^{e^{-x} x}}+3 x-x \log (2)}{x}}+\frac {e^{e^{e^{-x} x}}+3 x-x \log (2)}{x}\right ) \left (-1+e^{-x+e^{-x} x} (1-x) x\right )}{x^2} \, dx\\ &=\frac {1}{8} \int \frac {\exp \left (\frac {4 e^{e^{e^{-x} x}}+4 e^{\frac {1}{4} e^{3+\frac {e^{e^{e^{-x} x}}}{x}}} x+e^{3+\frac {e^{e^{e^{-x} x}}}{x}} x+4 e^{e^{-x} x} x+12 x \left (1-\frac {\log (2)}{3}\right )}{4 x}\right ) \left (-1+e^{-x+e^{-x} x} (1-x) x\right )}{x^2} \, dx\\ &=\frac {1}{8} \int \left (-\frac {\exp \left (\frac {4 e^{e^{e^{-x} x}}+4 e^{\frac {1}{4} e^{3+\frac {e^{e^{e^{-x} x}}}{x}}} x+e^{3+\frac {e^{e^{e^{-x} x}}}{x}} x+4 e^{e^{-x} x} x+12 x \left (1-\frac {\log (2)}{3}\right )}{4 x}\right )}{x^2}+\frac {\exp \left (-e^{-x} \left (-1+e^x\right ) x+\frac {4 e^{e^{e^{-x} x}}+4 e^{\frac {1}{4} e^{3+\frac {e^{e^{e^{-x} x}}}{x}}} x+e^{3+\frac {e^{e^{e^{-x} x}}}{x}} x+4 e^{e^{-x} x} x+12 x \left (1-\frac {\log (2)}{3}\right )}{4 x}\right ) (1-x)}{x}\right ) \, dx\\ &=-\left (\frac {1}{8} \int \frac {\exp \left (\frac {4 e^{e^{e^{-x} x}}+4 e^{\frac {1}{4} e^{3+\frac {e^{e^{e^{-x} x}}}{x}}} x+e^{3+\frac {e^{e^{e^{-x} x}}}{x}} x+4 e^{e^{-x} x} x+12 x \left (1-\frac {\log (2)}{3}\right )}{4 x}\right )}{x^2} \, dx\right )+\frac {1}{8} \int \frac {\exp \left (-e^{-x} \left (-1+e^x\right ) x+\frac {4 e^{e^{e^{-x} x}}+4 e^{\frac {1}{4} e^{3+\frac {e^{e^{e^{-x} x}}}{x}}} x+e^{3+\frac {e^{e^{e^{-x} x}}}{x}} x+4 e^{e^{-x} x} x+12 x \left (1-\frac {\log (2)}{3}\right )}{4 x}\right ) (1-x)}{x} \, dx\\ &=\frac {1}{8} \int \left (-\exp \left (-e^{-x} \left (-1+e^x\right ) x+\frac {4 e^{e^{e^{-x} x}}+4 e^{\frac {1}{4} e^{3+\frac {e^{e^{e^{-x} x}}}{x}}} x+e^{3+\frac {e^{e^{e^{-x} x}}}{x}} x+4 e^{e^{-x} x} x+12 x \left (1-\frac {\log (2)}{3}\right )}{4 x}\right )+\frac {\exp \left (-e^{-x} \left (-1+e^x\right ) x+\frac {4 e^{e^{e^{-x} x}}+4 e^{\frac {1}{4} e^{3+\frac {e^{e^{e^{-x} x}}}{x}}} x+e^{3+\frac {e^{e^{e^{-x} x}}}{x}} x+4 e^{e^{-x} x} x+12 x \left (1-\frac {\log (2)}{3}\right )}{4 x}\right )}{x}\right ) \, dx-\frac {1}{8} \int \frac {\exp \left (\frac {4 e^{e^{e^{-x} x}}+4 e^{\frac {1}{4} e^{3+\frac {e^{e^{e^{-x} x}}}{x}}} x+e^{3+\frac {e^{e^{e^{-x} x}}}{x}} x+4 e^{e^{-x} x} x+12 x \left (1-\frac {\log (2)}{3}\right )}{4 x}\right )}{x^2} \, dx\\ &=-\left (\frac {1}{8} \int \exp \left (-e^{-x} \left (-1+e^x\right ) x+\frac {4 e^{e^{e^{-x} x}}+4 e^{\frac {1}{4} e^{3+\frac {e^{e^{e^{-x} x}}}{x}}} x+e^{3+\frac {e^{e^{e^{-x} x}}}{x}} x+4 e^{e^{-x} x} x+12 x \left (1-\frac {\log (2)}{3}\right )}{4 x}\right ) \, dx\right )-\frac {1}{8} \int \frac {\exp \left (\frac {4 e^{e^{e^{-x} x}}+4 e^{\frac {1}{4} e^{3+\frac {e^{e^{e^{-x} x}}}{x}}} x+e^{3+\frac {e^{e^{e^{-x} x}}}{x}} x+4 e^{e^{-x} x} x+12 x \left (1-\frac {\log (2)}{3}\right )}{4 x}\right )}{x^2} \, dx+\frac {1}{8} \int \frac {\exp \left (-e^{-x} \left (-1+e^x\right ) x+\frac {4 e^{e^{e^{-x} x}}+4 e^{\frac {1}{4} e^{3+\frac {e^{e^{e^{-x} x}}}{x}}} x+e^{3+\frac {e^{e^{e^{-x} x}}}{x}} x+4 e^{e^{-x} x} x+12 x \left (1-\frac {\log (2)}{3}\right )}{4 x}\right )}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 31, normalized size = 0.94 \begin {gather*} \frac {1}{4} e^{e^{\frac {1}{4} e^{3+\frac {e^{e^{e^{-x} x}}}{x}}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 198, normalized size = 6.00 \begin {gather*} \frac {1}{4} \, e^{\left (\frac {{\left (x e^{\left (-x - \frac {x \log \relax (2) - 3 \, x - e^{\left (e^{\left (e^{\left (-x + \log \relax (x)\right )}\right )}\right )}}{x} + \log \relax (x)\right )} + 2 \, x e^{\left (-x + e^{\left (-x + \log \relax (x)\right )} + \log \relax (x)\right )} + 2 \, x e^{\left (-x + \frac {1}{2} \, e^{\left (-\frac {x \log \relax (2) - 3 \, x - e^{\left (e^{\left (e^{\left (-x + \log \relax (x)\right )}\right )}\right )}}{x}\right )} + \log \relax (x)\right )} - 2 \, {\left (x \log \relax (2) - 3 \, x\right )} e^{\left (-x + \log \relax (x)\right )} + 2 \, e^{\left (-x + e^{\left (e^{\left (-x + \log \relax (x)\right )}\right )} + \log \relax (x)\right )}\right )} e^{\left (x - \log \relax (x)\right )}}{2 \, x} + \frac {x \log \relax (2) - 3 \, x - e^{\left (e^{\left (e^{\left (-x + \log \relax (x)\right )}\right )}\right )}}{x} - \frac {1}{2} \, e^{\left (-\frac {x \log \relax (2) - 3 \, x - e^{\left (e^{\left (e^{\left (-x + \log \relax (x)\right )}\right )}\right )}}{x}\right )} - e^{\left (e^{\left (-x + \log \relax (x)\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (x - 1\right )} e^{\left (-x + e^{\left (-x + \log \relax (x)\right )} + \log \relax (x)\right )} + 1\right )} e^{\left (-\frac {x \log \relax (2) - 3 \, x - e^{\left (e^{\left (e^{\left (-x + \log \relax (x)\right )}\right )}\right )}}{x} + e^{\left (\frac {1}{2} \, e^{\left (-\frac {x \log \relax (2) - 3 \, x - e^{\left (e^{\left (e^{\left (-x + \log \relax (x)\right )}\right )}\right )}}{x}\right )}\right )} + \frac {1}{2} \, e^{\left (-\frac {x \log \relax (2) - 3 \, x - e^{\left (e^{\left (e^{\left (-x + \log \relax (x)\right )}\right )}\right )}}{x}\right )} + e^{\left (e^{\left (-x + \log \relax (x)\right )}\right )}\right )}}{8 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 24, normalized size = 0.73
method | result | size |
risch | \(\frac {{\mathrm e}^{{\mathrm e}^{\frac {{\mathrm e}^{\frac {{\mathrm e}^{{\mathrm e}^{x \,{\mathrm e}^{-x}}}+3 x}{x}}}{4}}}}{4}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.88, size = 21, normalized size = 0.64 \begin {gather*} \frac {1}{4} \, e^{\left (e^{\left (\frac {1}{4} \, e^{\left (\frac {e^{\left (e^{\left (x e^{\left (-x\right )}\right )}\right )}}{x} + 3\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.72, size = 21, normalized size = 0.64 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^{\frac {{\mathrm {e}}^3\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^{x\,{\mathrm {e}}^{-x}}}}{x}}}{4}}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________