Optimal. Leaf size=28 \[ x \left (-e+x+4 x \left (e^3+\left (x+\frac {2 x}{e}\right )^2\right )-\log (4)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 35, normalized size of antiderivative = 1.25, number of steps used = 4, number of rules used = 2, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {6, 12} \begin {gather*} \frac {16 (1+e) x^4}{e^2}+4 x^4+4 e^3 x^2+x^2-x (e+\log (4)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^3+8 e^5 x+(64+64 e) x^3+e^2 \left (2 x+16 x^3\right )-e^2 \log (4)}{e^2} \, dx\\ &=\frac {\int \left (-e^3+8 e^5 x+(64+64 e) x^3+e^2 \left (2 x+16 x^3\right )-e^2 \log (4)\right ) \, dx}{e^2}\\ &=4 e^3 x^2+\frac {16 (1+e) x^4}{e^2}-x (e+\log (4))+\int \left (2 x+16 x^3\right ) \, dx\\ &=x^2+4 e^3 x^2+4 x^4+\frac {16 (1+e) x^4}{e^2}-x (e+\log (4))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 42, normalized size = 1.50 \begin {gather*} -e x+x^2+4 e^3 x^2+4 x^4+\frac {16 x^4}{e^2}+\frac {16 x^4}{e}-x \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 47, normalized size = 1.68 \begin {gather*} {\left (16 \, x^{4} e + 16 \, x^{4} + 4 \, x^{2} e^{5} - 2 \, x e^{2} \log \relax (2) - x e^{3} + {\left (4 \, x^{4} + x^{2}\right )} e^{2}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 47, normalized size = 1.68 \begin {gather*} {\left (16 \, x^{4} e + 16 \, x^{4} + 4 \, x^{2} e^{5} - 2 \, x e^{2} \log \relax (2) - x e^{3} + {\left (4 \, x^{4} + x^{2}\right )} e^{2}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 41, normalized size = 1.46
method | result | size |
risch | \(4 x^{2} {\mathrm e}^{3}+4 x^{4}+16 x^{4} {\mathrm e}^{-1}-x \,{\mathrm e}-2 x \ln \relax (2)+x^{2}+16 x^{4} {\mathrm e}^{-2}\) | \(41\) |
norman | \(\left ({\mathrm e} \left (4 \,{\mathrm e}^{3}+1\right ) x^{2}+4 \left ({\mathrm e}^{2}+4 \,{\mathrm e}+4\right ) {\mathrm e}^{-1} x^{4}-{\mathrm e} \left ({\mathrm e}+2 \ln \relax (2)\right ) x \right ) {\mathrm e}^{-1}\) | \(50\) |
gosper | \(-x \left (-4 x^{3} {\mathrm e}^{2}-4 x \,{\mathrm e}^{2} {\mathrm e}^{3}-16 x^{3} {\mathrm e}+{\mathrm e}^{3}+2 \,{\mathrm e}^{2} \ln \relax (2)-{\mathrm e}^{2} x -16 x^{3}\right ) {\mathrm e}^{-2}\) | \(58\) |
default | \({\mathrm e}^{-2} \left (-2 x \,{\mathrm e}^{2} \ln \relax (2)+4 x^{2} {\mathrm e}^{2} {\mathrm e}^{3}-x \,{\mathrm e}^{3}+{\mathrm e}^{2} \left (4 x^{4}+x^{2}\right )+16 x^{4} {\mathrm e}+16 x^{4}\right )\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 47, normalized size = 1.68 \begin {gather*} {\left (16 \, x^{4} e + 16 \, x^{4} + 4 \, x^{2} e^{5} - 2 \, x e^{2} \log \relax (2) - x e^{3} + {\left (4 \, x^{4} + x^{2}\right )} e^{2}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 33, normalized size = 1.18 \begin {gather*} \left (16\,{\mathrm {e}}^{-1}+16\,{\mathrm {e}}^{-2}+4\right )\,x^4+\left (4\,{\mathrm {e}}^3+1\right )\,x^2+\left (-\mathrm {e}-\ln \relax (4)\right )\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 39, normalized size = 1.39 \begin {gather*} \frac {x^{4} \left (16 + 4 e^{2} + 16 e\right )}{e^{2}} + x^{2} \left (1 + 4 e^{3}\right ) + x \left (- e - 2 \log {\relax (2 )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________