Optimal. Leaf size=22 \[ 16 e^9 \left (e^x+\log \left (\frac {2}{5 x}+\log ^2(x)\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-32 e^9+32 e^{9+x} x+160 e^9 x \log (x)+80 e^{9+x} x^2 \log ^2(x)}{2 x+5 x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-32 e^9+32 e^{9+x} x+160 e^9 x \log (x)+80 e^{9+x} x^2 \log ^2(x)}{x^2 \left (\frac {2}{x}+5 \log ^2(x)\right )} \, dx\\ &=\int \frac {-32 e^9+32 e^{9+x} x+160 e^9 x \log (x)+80 e^{9+x} x^2 \log ^2(x)}{x \left (2+5 x \log ^2(x)\right )} \, dx\\ &=\int \frac {16 e^9 \left (-2+2 e^x x+10 x \log (x)+5 e^x x^2 \log ^2(x)\right )}{x \left (2+5 x \log ^2(x)\right )} \, dx\\ &=\left (16 e^9\right ) \int \frac {-2+2 e^x x+10 x \log (x)+5 e^x x^2 \log ^2(x)}{x \left (2+5 x \log ^2(x)\right )} \, dx\\ &=\left (16 e^9\right ) \int \left (e^x+\frac {2 (-1+5 x \log (x))}{x \left (2+5 x \log ^2(x)\right )}\right ) \, dx\\ &=\left (16 e^9\right ) \int e^x \, dx+\left (32 e^9\right ) \int \frac {-1+5 x \log (x)}{x \left (2+5 x \log ^2(x)\right )} \, dx\\ &=16 e^{9+x}+\left (32 e^9\right ) \int \left (-\frac {1}{x \left (2+5 x \log ^2(x)\right )}+\frac {5 \log (x)}{2+5 x \log ^2(x)}\right ) \, dx\\ &=16 e^{9+x}-\left (32 e^9\right ) \int \frac {1}{x \left (2+5 x \log ^2(x)\right )} \, dx+\left (160 e^9\right ) \int \frac {\log (x)}{2+5 x \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 23, normalized size = 1.05 \begin {gather*} 16 e^9 \left (e^x-\log (x)+\log \left (2+5 x \log ^2(x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 25, normalized size = 1.14 \begin {gather*} 16 \, e^{9} \log \left (\frac {5 \, x \log \relax (x)^{2} + 2}{x}\right ) + 16 \, e^{\left (x + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 27, normalized size = 1.23 \begin {gather*} 16 \, e^{9} \log \left (5 \, x \log \relax (x)^{2} + 2\right ) - 16 \, e^{9} \log \relax (x) + 16 \, e^{\left (x + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 23, normalized size = 1.05
method | result | size |
risch | \(16 \,{\mathrm e}^{x +9}+16 \,{\mathrm e}^{9} \ln \left (\ln \relax (x )^{2}+\frac {2}{5 x}\right )\) | \(23\) |
default | \(-16 \,{\mathrm e}^{9} \ln \relax (x )+16 \,{\mathrm e}^{9} \ln \left (5 x \ln \relax (x )^{2}+2\right )+16 \,{\mathrm e}^{9} {\mathrm e}^{x}\) | \(28\) |
norman | \(-16 \,{\mathrm e}^{9} \ln \relax (x )+16 \,{\mathrm e}^{9} \ln \left (5 x \ln \relax (x )^{2}+2\right )+16 \,{\mathrm e}^{9} {\mathrm e}^{x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 26, normalized size = 1.18 \begin {gather*} 16 \, e^{9} \log \left (\frac {5 \, x \log \relax (x)^{2} + 2}{5 \, x}\right ) + 16 \, e^{\left (x + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.63, size = 25, normalized size = 1.14 \begin {gather*} 16\,{\mathrm {e}}^9\,{\mathrm {e}}^x+16\,\ln \left (\frac {5\,x\,{\ln \relax (x)}^2+2}{x}\right )\,{\mathrm {e}}^9 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 24, normalized size = 1.09 \begin {gather*} 16 e^{9} e^{x} + 16 e^{9} \log {\left (\log {\relax (x )}^{2} + \frac {2}{5 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________