Optimal. Leaf size=12 \[ e^{2 x (e+2 x)} x \]
________________________________________________________________________________________
Rubi [B] time = 0.03, antiderivative size = 29, normalized size of antiderivative = 2.42, number of steps used = 1, number of rules used = 1, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {2288} \begin {gather*} \frac {e^{4 x^2+2 e x} \left (4 x^2+e x\right )}{4 x+e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{2 e x+4 x^2} \left (e x+4 x^2\right )}{e+4 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 12, normalized size = 1.00 \begin {gather*} e^{2 x (e+2 x)} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 14, normalized size = 1.17 \begin {gather*} x e^{\left (4 \, x^{2} + 2 \, x e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.00, size = 38, normalized size = 3.17 \begin {gather*} \frac {1}{4} \, {\left (4 \, x - e\right )} e^{\left (4 \, x^{2} + 2 \, x e\right )} + \frac {1}{4} \, e^{\left (4 \, x^{2} + 2 \, x e + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 13, normalized size = 1.08
method | result | size |
risch | \({\mathrm e}^{2 \left ({\mathrm e}+2 x \right ) x} x\) | \(13\) |
gosper | \(x \,{\mathrm e}^{2 x \,{\mathrm e}+4 x^{2}}\) | \(15\) |
norman | \(x \,{\mathrm e}^{2 x \,{\mathrm e}+4 x^{2}}\) | \(15\) |
default | \(x \,{\mathrm e}^{2 x \,{\mathrm e}+4 x^{2}}-2 \,{\mathrm e} \left (\frac {{\mathrm e}^{2 x \,{\mathrm e}+4 x^{2}}}{8}+\frac {i {\mathrm e} \sqrt {\pi }\, {\mathrm e}^{-\frac {{\mathrm e}^{2}}{4}} \erf \left (2 i x +\frac {i {\mathrm e}}{2}\right )}{16}\right )+\frac {{\mathrm e}^{2 x \,{\mathrm e}+4 x^{2}+1}}{4}+\frac {i {\mathrm e} \sqrt {\pi }\, {\mathrm e}^{1-\frac {{\mathrm e}^{2}}{4}} \erf \left (2 i x +\frac {i {\mathrm e}}{2}\right )}{8}\) | \(104\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.52, size = 182, normalized size = 15.17 \begin {gather*} -\frac {1}{4} i \, \sqrt {\pi } \operatorname {erf}\left (2 i \, x + \frac {1}{2} i \, e\right ) e^{\left (-\frac {1}{4} \, e^{2}\right )} + \frac {1}{8} \, {\left (\frac {\sqrt {\pi } {\left (4 \, x + e\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (4 \, x + e\right )}^{2}}\right ) - 1\right )} e^{2}}{\sqrt {-{\left (4 \, x + e\right )}^{2}}} - \frac {4 \, {\left (4 \, x + e\right )}^{3} \Gamma \left (\frac {3}{2}, -\frac {1}{4} \, {\left (4 \, x + e\right )}^{2}\right )}{\left (-{\left (4 \, x + e\right )}^{2}\right )^{\frac {3}{2}}} - 4 \, e^{\left (\frac {1}{4} \, {\left (4 \, x + e\right )}^{2} + 1\right )}\right )} e^{\left (-\frac {1}{4} \, e^{2}\right )} - \frac {1}{8} \, {\left (\frac {\sqrt {\pi } {\left (4 \, x + e\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (4 \, x + e\right )}^{2}}\right ) - 1\right )} e}{\sqrt {-{\left (4 \, x + e\right )}^{2}}} - 2 \, e^{\left (\frac {1}{4} \, {\left (4 \, x + e\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{4} \, e^{2} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 14, normalized size = 1.17 \begin {gather*} x\,{\mathrm {e}}^{4\,x^2+2\,\mathrm {e}\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 1.17 \begin {gather*} x e^{4 x^{2} + 2 e x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________