Optimal. Leaf size=21 \[ \left (6+\left (4+(x+\log (3))^2\right )^2\right ) \log \left ((1-x)^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 1.06, antiderivative size = 251, normalized size of antiderivative = 11.95, number of steps used = 20, number of rules used = 10, integrand size = 126, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {6741, 6688, 12, 6742, 1850, 2417, 2395, 43, 2389, 2295} \begin {gather*} x^4 \log \left ((x-1)^2\right )-\frac {2 x^3}{3}+\frac {4}{3} x^3 \log (27) \log \left ((x-1)^2\right )+\frac {2}{3} x^3 (1+\log (81))-\frac {8}{9} x^3 \log (27)-x^2+2 x^2 \left (4+3 \log ^2(3)\right ) \log \left ((x-1)^2\right )+x^2 \left (9+6 \log ^2(3)+\log (81)\right )-2 x^2 \left (4+3 \log ^2(3)\right )-\frac {4}{3} x^2 \log (27)-2 x-8 x \left (\log ^3(3)+\log (81)\right )-4 (1-x) \left (\log ^3(3)+\log (81)\right ) \log \left ((x-1)^2\right )-4 x \left (4+3 \log ^2(3)\right )-4 \left (4+3 \log ^2(3)\right ) \log (1-x)+2 x \left (9+4 \log ^3(3)+6 \log ^2(3)+5 \log (81)\right )+2 \left (31+\log ^4(3)+4 \log ^3(3)+14 \log ^2(3)+5 \log (81)\right ) \log (1-x)-\frac {8}{3} x \log (27)-\frac {8}{3} \log (27) \log (1-x)-2 \log (1-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 1850
Rule 2295
Rule 2389
Rule 2395
Rule 2417
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16 x^2-2 x^4-\left (32 x+8 x^3\right ) \log (3)-\left (16+12 x^2\right ) \log ^2(3)-8 x \log ^3(3)-44 \left (1+\frac {\log ^4(3)}{22}\right )-\left (-16 x+16 x^2-4 x^3+4 x^4+\left (-16+16 x-12 x^2+12 x^3\right ) \log (3)+\left (-12 x+12 x^2\right ) \log ^2(3)+(-4+4 x) \log ^3(3)\right ) \log \left (1-2 x+x^2\right )}{1-x} \, dx\\ &=\int \frac {2 \left (-x^4-x^2 \left (8+6 \log ^2(3)\right )-22 \left (1+\frac {1}{22} \log ^2(3) \left (8+\log ^2(3)\right )\right )-x^3 \log (81)-4 x \left (\log ^3(3)+\log (81)\right )-2 (-1+x) \left (x^3+\log ^3(3)+x \left (4+3 \log ^2(3)\right )+x^2 \log (27)+\log (81)\right ) \log \left ((-1+x)^2\right )\right )}{1-x} \, dx\\ &=2 \int \frac {-x^4-x^2 \left (8+6 \log ^2(3)\right )-22 \left (1+\frac {1}{22} \log ^2(3) \left (8+\log ^2(3)\right )\right )-x^3 \log (81)-4 x \left (\log ^3(3)+\log (81)\right )-2 (-1+x) \left (x^3+\log ^3(3)+x \left (4+3 \log ^2(3)\right )+x^2 \log (27)+\log (81)\right ) \log \left ((-1+x)^2\right )}{1-x} \, dx\\ &=2 \int \left (\frac {-22-x^4-8 \log ^2(3)-\log ^4(3)-2 x^2 \left (4+3 \log ^2(3)\right )-x^3 \log (81)-4 x \left (\log ^3(3)+\log (81)\right )}{1-x}+2 \left (x^3+\log ^3(3)+x \left (4+3 \log ^2(3)\right )+x^2 \log (27)+\log (81)\right ) \log \left ((-1+x)^2\right )\right ) \, dx\\ &=2 \int \frac {-22-x^4-8 \log ^2(3)-\log ^4(3)-2 x^2 \left (4+3 \log ^2(3)\right )-x^3 \log (81)-4 x \left (\log ^3(3)+\log (81)\right )}{1-x} \, dx+4 \int \left (x^3+\log ^3(3)+x \left (4+3 \log ^2(3)\right )+x^2 \log (27)+\log (81)\right ) \log \left ((-1+x)^2\right ) \, dx\\ &=2 \int \left (x^3+x^2 (1+\log (81))+x \left (9+6 \log ^2(3)+\log (81)\right )+\frac {31+14 \log ^2(3)+4 \log ^3(3)+\log ^4(3)+5 \log (81)}{-1+x}+9 \left (1+\frac {1}{9} \left (6 \log ^2(3)+4 \log ^3(3)+5 \log (81)\right )\right )\right ) \, dx+4 \int \left (x^3 \log \left ((-1+x)^2\right )+x \left (4+3 \log ^2(3)\right ) \log \left ((-1+x)^2\right )+x^2 \log (27) \log \left ((-1+x)^2\right )+\log ^3(3) \left (1+\frac {\log (81)}{\log ^3(3)}\right ) \log \left ((-1+x)^2\right )\right ) \, dx\\ &=\frac {x^4}{2}+\frac {2}{3} x^3 (1+\log (81))+x^2 \left (9+6 \log ^2(3)+\log (81)\right )+2 x \left (9+6 \log ^2(3)+4 \log ^3(3)+5 \log (81)\right )+2 \left (31+14 \log ^2(3)+4 \log ^3(3)+\log ^4(3)+5 \log (81)\right ) \log (1-x)+4 \int x^3 \log \left ((-1+x)^2\right ) \, dx+\left (4 \left (4+3 \log ^2(3)\right )\right ) \int x \log \left ((-1+x)^2\right ) \, dx+(4 \log (27)) \int x^2 \log \left ((-1+x)^2\right ) \, dx+\left (4 \left (\log ^3(3)+\log (81)\right )\right ) \int \log \left ((-1+x)^2\right ) \, dx\\ &=\frac {x^4}{2}+\frac {2}{3} x^3 (1+\log (81))+x^2 \left (9+6 \log ^2(3)+\log (81)\right )+2 x \left (9+6 \log ^2(3)+4 \log ^3(3)+5 \log (81)\right )+2 \left (31+14 \log ^2(3)+4 \log ^3(3)+\log ^4(3)+5 \log (81)\right ) \log (1-x)+x^4 \log \left ((-1+x)^2\right )+2 x^2 \left (4+3 \log ^2(3)\right ) \log \left ((-1+x)^2\right )+\frac {4}{3} x^3 \log (27) \log \left ((-1+x)^2\right )-2 \int \frac {x^4}{-1+x} \, dx-\left (4 \left (4+3 \log ^2(3)\right )\right ) \int \frac {x^2}{-1+x} \, dx-\frac {1}{3} (8 \log (27)) \int \frac {x^3}{-1+x} \, dx+\left (4 \left (\log ^3(3)+\log (81)\right )\right ) \operatorname {Subst}\left (\int \log \left (x^2\right ) \, dx,x,-1+x\right )\\ &=\frac {x^4}{2}+\frac {2}{3} x^3 (1+\log (81))+x^2 \left (9+6 \log ^2(3)+\log (81)\right )-8 x \left (\log ^3(3)+\log (81)\right )+2 x \left (9+6 \log ^2(3)+4 \log ^3(3)+5 \log (81)\right )+2 \left (31+14 \log ^2(3)+4 \log ^3(3)+\log ^4(3)+5 \log (81)\right ) \log (1-x)+x^4 \log \left ((-1+x)^2\right )+2 x^2 \left (4+3 \log ^2(3)\right ) \log \left ((-1+x)^2\right )+\frac {4}{3} x^3 \log (27) \log \left ((-1+x)^2\right )-4 (1-x) \left (\log ^3(3)+\log (81)\right ) \log \left ((-1+x)^2\right )-2 \int \left (1+\frac {1}{-1+x}+x+x^2+x^3\right ) \, dx-\left (4 \left (4+3 \log ^2(3)\right )\right ) \int \left (1+\frac {1}{-1+x}+x\right ) \, dx-\frac {1}{3} (8 \log (27)) \int \left (1+\frac {1}{-1+x}+x+x^2\right ) \, dx\\ &=-2 x-x^2-\frac {2 x^3}{3}-4 x \left (4+3 \log ^2(3)\right )-2 x^2 \left (4+3 \log ^2(3)\right )-\frac {8}{3} x \log (27)-\frac {4}{3} x^2 \log (27)-\frac {8}{9} x^3 \log (27)+\frac {2}{3} x^3 (1+\log (81))+x^2 \left (9+6 \log ^2(3)+\log (81)\right )-8 x \left (\log ^3(3)+\log (81)\right )+2 x \left (9+6 \log ^2(3)+4 \log ^3(3)+5 \log (81)\right )-2 \log (1-x)-4 \left (4+3 \log ^2(3)\right ) \log (1-x)-\frac {8}{3} \log (27) \log (1-x)+2 \left (31+14 \log ^2(3)+4 \log ^3(3)+\log ^4(3)+5 \log (81)\right ) \log (1-x)+x^4 \log \left ((-1+x)^2\right )+2 x^2 \left (4+3 \log ^2(3)\right ) \log \left ((-1+x)^2\right )+\frac {4}{3} x^3 \log (27) \log \left ((-1+x)^2\right )-4 (1-x) \left (\log ^3(3)+\log (81)\right ) \log \left ((-1+x)^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 94, normalized size = 4.48 \begin {gather*} 2 \left (\left (31+14 \log ^2(3)+4 \log ^3(3)+\log ^4(3)+5 \log (81)\right ) \log (-1+x)+\frac {1}{6} (-1+x) \left (27+3 x^3+18 \log ^2(3)+12 \log ^3(3)+4 \log (27)+x^2 (3+4 \log (27))+x \left (27+18 \log ^2(3)+4 \log (27)\right )+12 \log (81)\right ) \log \left ((-1+x)^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 55, normalized size = 2.62 \begin {gather*} {\left (x^{4} + 4 \, x \log \relax (3)^{3} + \log \relax (3)^{4} + 2 \, {\left (3 \, x^{2} + 4\right )} \log \relax (3)^{2} + 8 \, x^{2} + 4 \, {\left (x^{3} + 4 \, x\right )} \log \relax (3) + 22\right )} \log \left (x^{2} - 2 \, x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 65, normalized size = 3.10 \begin {gather*} {\left (x^{4} + 4 \, x^{3} \log \relax (3) + 2 \, {\left (3 \, \log \relax (3)^{2} + 4\right )} x^{2} + 4 \, {\left (\log \relax (3)^{3} + 4 \, \log \relax (3)\right )} x\right )} \log \left (x^{2} - 2 \, x + 1\right ) + 2 \, {\left (\log \relax (3)^{4} + 8 \, \log \relax (3)^{2} + 22\right )} \log \left (x - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.24, size = 75, normalized size = 3.57
method | result | size |
risch | \(\left (4 x \ln \relax (3)^{3}+6 x^{2} \ln \relax (3)^{2}+4 x^{3} \ln \relax (3)+x^{4}+16 x \ln \relax (3)+8 x^{2}\right ) \ln \left (x^{2}-2 x +1\right )+2 \ln \relax (3)^{4} \ln \left (x -1\right )+16 \ln \relax (3)^{2} \ln \left (x -1\right )+44 \ln \left (x -1\right )\) | \(75\) |
norman | \(\left (\ln \relax (3)^{4}+8 \ln \relax (3)^{2}+22\right ) \ln \left (x^{2}-2 x +1\right )+\ln \left (x^{2}-2 x +1\right ) x^{4}+\left (8+6 \ln \relax (3)^{2}\right ) x^{2} \ln \left (x^{2}-2 x +1\right )+\left (4 \ln \relax (3)^{3}+16 \ln \relax (3)\right ) x \ln \left (x^{2}-2 x +1\right )+4 \ln \relax (3) \ln \left (x^{2}-2 x +1\right ) x^{3}\) | \(96\) |
default | \(4 \ln \relax (3) \ln \left (x^{2}-2 x +1\right ) x^{3}+16 \ln \relax (3) \ln \left (x^{2}-2 x +1\right ) x +6 \ln \relax (3)^{2} \ln \left (x^{2}-2 x +1\right ) x^{2}+16 \ln \relax (3)^{2} \ln \left (x -1\right )+4 \ln \relax (3)^{3} \ln \left (x^{2}-2 x +1\right ) x +2 \ln \relax (3)^{4} \ln \left (x -1\right )+44 \ln \left (x -1\right )+\ln \left (x^{2}-2 x +1\right ) x^{4}+8 x^{2} \ln \left (x^{2}-2 x +1\right )\) | \(119\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 588, normalized size = 28.00 \begin {gather*} 4 \, {\left (x + \log \left (x - 1\right )\right )} \log \relax (3)^{3} \log \left (x^{2} - 2 \, x + 1\right ) + 2 \, \log \relax (3)^{4} \log \left (x - 1\right ) - 4 \, \log \relax (3)^{3} \log \left (x^{2} - 2 \, x + 1\right ) \log \left (x - 1\right ) + 4 \, {\left (\log \left (x^{2} - 2 \, x + 1\right ) \log \left (x - 1\right ) - \log \left (x - 1\right )^{2}\right )} \log \relax (3)^{3} - 4 \, {\left (\log \left (x - 1\right )^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \relax (3)^{3} + 8 \, {\left (x + \log \left (x - 1\right )\right )} \log \relax (3)^{3} + 6 \, {\left (x^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \relax (3)^{2} \log \left (x^{2} - 2 \, x + 1\right ) - 12 \, {\left (x + \log \left (x - 1\right )\right )} \log \relax (3)^{2} \log \left (x^{2} - 2 \, x + 1\right ) - 6 \, {\left (x^{2} + 2 \, \log \left (x - 1\right )^{2} + 6 \, x + 6 \, \log \left (x - 1\right )\right )} \log \relax (3)^{2} + 6 \, {\left (x^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \relax (3)^{2} + 12 \, {\left (\log \left (x - 1\right )^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \relax (3)^{2} + 2 \, {\left (2 \, x^{3} + 3 \, x^{2} + 6 \, x + 6 \, \log \left (x - 1\right )\right )} \log \relax (3) \log \left (x^{2} - 2 \, x + 1\right ) - 6 \, {\left (x^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \relax (3) \log \left (x^{2} - 2 \, x + 1\right ) + 16 \, {\left (x + \log \left (x - 1\right )\right )} \log \relax (3) \log \left (x^{2} - 2 \, x + 1\right ) + 16 \, \log \relax (3)^{2} \log \left (x - 1\right ) - 16 \, \log \relax (3) \log \left (x^{2} - 2 \, x + 1\right ) \log \left (x - 1\right ) - \frac {2}{3} \, {\left (4 \, x^{3} + 15 \, x^{2} + 18 \, \log \left (x - 1\right )^{2} + 66 \, x + 66 \, \log \left (x - 1\right )\right )} \log \relax (3) + \frac {4}{3} \, {\left (2 \, x^{3} + 3 \, x^{2} + 6 \, x + 6 \, \log \left (x - 1\right )\right )} \log \relax (3) + 6 \, {\left (x^{2} + 2 \, \log \left (x - 1\right )^{2} + 6 \, x + 6 \, \log \left (x - 1\right )\right )} \log \relax (3) + 16 \, {\left (\log \left (x^{2} - 2 \, x + 1\right ) \log \left (x - 1\right ) - \log \left (x - 1\right )^{2}\right )} \log \relax (3) - 16 \, {\left (\log \left (x - 1\right )^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \relax (3) + 32 \, {\left (x + \log \left (x - 1\right )\right )} \log \relax (3) + \frac {1}{3} \, {\left (3 \, x^{4} + 4 \, x^{3} + 6 \, x^{2} + 12 \, x + 12 \, \log \left (x - 1\right )\right )} \log \left (x^{2} - 2 \, x + 1\right ) - \frac {2}{3} \, {\left (2 \, x^{3} + 3 \, x^{2} + 6 \, x + 6 \, \log \left (x - 1\right )\right )} \log \left (x^{2} - 2 \, x + 1\right ) + 8 \, {\left (x^{2} + 2 \, x + 2 \, \log \left (x - 1\right )\right )} \log \left (x^{2} - 2 \, x + 1\right ) - 16 \, {\left (x + \log \left (x - 1\right )\right )} \log \left (x^{2} - 2 \, x + 1\right ) + 44 \, \log \left (x - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.77, size = 135, normalized size = 6.43 \begin {gather*} \ln \left (x^2-2\,x+1\right )\,\left (4\,\ln \left (81\right )-16\,\ln \relax (3)+6\,x^2\,{\ln \relax (3)}^2+4\,x\,\ln \relax (3)+3\,x\,\ln \left (81\right )-8\,x^2\,\ln \relax (3)+4\,x\,{\ln \relax (3)}^3+2\,x^2\,\ln \left (81\right )+x^3\,\ln \left (81\right )+8\,{\ln \relax (3)}^2+{\ln \relax (3)}^4+8\,x^2+x^4+22\right )-\frac {5\,\ln \left (x^2-2\,x+1\right )\,\left (4\,\ln \relax (3)-\ln \left (81\right )\right )}{x-1}-\frac {\ln \left (x^2-2\,x+1\right )\,\left (4\,\ln \relax (3)-\ln \left (81\right )\right )}{{\left (x-1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 71, normalized size = 3.38 \begin {gather*} \left (x^{4} + 4 x^{3} \log {\relax (3 )} + 6 x^{2} \log {\relax (3 )}^{2} + 8 x^{2} + 4 x \log {\relax (3 )}^{3} + 16 x \log {\relax (3 )}\right ) \log {\left (x^{2} - 2 x + 1 \right )} + \left (2 \log {\relax (3 )}^{4} + 16 \log {\relax (3 )}^{2} + 44\right ) \log {\left (x - 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________