Optimal. Leaf size=24 \[ \log \left (e^{1+e^{-x} x}+\log \left (\log \left (125 e^2 \log ^2(x)\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.49, antiderivative size = 23, normalized size of antiderivative = 0.96, number of steps used = 2, number of rules used = 2, integrand size = 95, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {6741, 6684} \begin {gather*} \log \left (e^{e^{-x} x+1}+\log \left (\log \left (125 \log ^2(x)\right )+2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (2 e^x+e^{1+e^{-x} x} \left (x-x^2\right ) \log (x) \log \left (125 e^2 \log ^2(x)\right )\right )}{x \log (x) \left (2 \left (1+\frac {3 \log (5)}{2}\right )+\log \left (\log ^2(x)\right )\right ) \left (e^{1+e^{-x} x}+\log \left (2+\log \left (125 \log ^2(x)\right )\right )\right )} \, dx\\ &=\log \left (e^{1+e^{-x} x}+\log \left (2+\log \left (125 \log ^2(x)\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.68, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 e^x+e^{1+e^{-x} x} \left (x-x^2\right ) \log (x) \log \left (125 e^2 \log ^2(x)\right )}{e^{1+x+e^{-x} x} x \log (x) \log \left (125 e^2 \log ^2(x)\right )+e^x x \log (x) \log \left (125 e^2 \log ^2(x)\right ) \log \left (\log \left (125 e^2 \log ^2(x)\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 34, normalized size = 1.42 \begin {gather*} \log \left ({\left (e^{x} \log \left (\log \left (125 \, e^{2} \log \relax (x)^{2}\right )\right ) + e^{\left ({\left ({\left (x + 1\right )} e^{x} + x\right )} e^{\left (-x\right )}\right )}\right )} e^{\left (-x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.71, size = 55, normalized size = 2.29
method | result | size |
risch | \(\ln \left ({\mathrm e}^{1+x \,{\mathrm e}^{-x}}+\ln \left (3 \ln \relax (5)+2+2 \ln \left (\ln \relax (x )\right )-\frac {i \pi \,\mathrm {csgn}\left (i \ln \relax (x )^{2}\right ) \left (-\mathrm {csgn}\left (i \ln \relax (x )^{2}\right )+\mathrm {csgn}\left (i \ln \relax (x )\right )\right )^{2}}{2}\right )\right )\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 23, normalized size = 0.96 \begin {gather*} \log \left (e^{\left (x e^{\left (-x\right )} + 1\right )} + \log \left (3 \, \log \relax (5) + 2 \, \log \left (\log \relax (x)\right ) + 2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.04, size = 21, normalized size = 0.88 \begin {gather*} \ln \left ({\mathrm {e}}^{x\,{\mathrm {e}}^{-x}+1}+\ln \left (\ln \left (125\,{\mathrm {e}}^2\,{\ln \relax (x)}^2\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.07, size = 24, normalized size = 1.00 \begin {gather*} \log {\left (e^{x e^{- x}} + \frac {\log {\left (\log {\left (125 e^{2} \log {\relax (x )}^{2} \right )} \right )}}{e} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________