Optimal. Leaf size=40 \[ e^{\frac {\left (x+\frac {4}{2+x}\right ) \left (x+\frac {\log (x)}{4}\right )^2}{x (i \pi +\log (5-\log (5)))^2}} \]
________________________________________________________________________________________
Rubi [F] time = 18.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {64 x^2+32 x^3+16 x^4+\left (32 x+16 x^2+8 x^3\right ) \log (x)+\left (4+2 x+x^2\right ) \log ^2(x)}{\left (32 x+16 x^2\right ) (i \pi +\log (5-\log (5)))^2}\right ) \left (32 x+96 x^2+80 x^3+68 x^4+16 x^5+\left (8+8 x+4 x^2+17 x^3+4 x^4\right ) \log (x)+(-4-4 x) \log ^2(x)\right )}{\left (32 x^2+32 x^3+8 x^4\right ) (i \pi +\log (5-\log (5)))^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\exp \left (\frac {64 x^2+32 x^3+16 x^4+\left (32 x+16 x^2+8 x^3\right ) \log (x)+\left (4+2 x+x^2\right ) \log ^2(x)}{\left (32 x+16 x^2\right ) (i \pi +\log (5-\log (5)))^2}\right ) \left (32 x+96 x^2+80 x^3+68 x^4+16 x^5+\left (8+8 x+4 x^2+17 x^3+4 x^4\right ) \log (x)+(-4-4 x) \log ^2(x)\right )}{32 x^2+32 x^3+8 x^4} \, dx}{(i \pi +\log (5-\log (5)))^2}\\ &=\frac {\int \frac {\exp \left (\frac {64 x^2+32 x^3+16 x^4+\left (32 x+16 x^2+8 x^3\right ) \log (x)+\left (4+2 x+x^2\right ) \log ^2(x)}{\left (32 x+16 x^2\right ) (i \pi +\log (5-\log (5)))^2}\right ) \left (32 x+96 x^2+80 x^3+68 x^4+16 x^5+\left (8+8 x+4 x^2+17 x^3+4 x^4\right ) \log (x)+(-4-4 x) \log ^2(x)\right )}{x^2 \left (32+32 x+8 x^2\right )} \, dx}{(i \pi +\log (5-\log (5)))^2}\\ &=\frac {\int \frac {\exp \left (\frac {64 x^2+32 x^3+16 x^4+\left (32 x+16 x^2+8 x^3\right ) \log (x)+\left (4+2 x+x^2\right ) \log ^2(x)}{\left (32 x+16 x^2\right ) (i \pi +\log (5-\log (5)))^2}\right ) \left (32 x+96 x^2+80 x^3+68 x^4+16 x^5+\left (8+8 x+4 x^2+17 x^3+4 x^4\right ) \log (x)+(-4-4 x) \log ^2(x)\right )}{8 x^2 (2+x)^2} \, dx}{(i \pi +\log (5-\log (5)))^2}\\ &=\frac {\int \frac {\exp \left (\frac {64 x^2+32 x^3+16 x^4+\left (32 x+16 x^2+8 x^3\right ) \log (x)+\left (4+2 x+x^2\right ) \log ^2(x)}{\left (32 x+16 x^2\right ) (i \pi +\log (5-\log (5)))^2}\right ) \left (32 x+96 x^2+80 x^3+68 x^4+16 x^5+\left (8+8 x+4 x^2+17 x^3+4 x^4\right ) \log (x)+(-4-4 x) \log ^2(x)\right )}{x^2 (2+x)^2} \, dx}{8 (i \pi +\log (5-\log (5)))^2}\\ &=\frac {\int \frac {\exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right ) \left (32 x+96 x^2+80 x^3+68 x^4+16 x^5+\left (8+8 x+4 x^2+17 x^3+4 x^4\right ) \log (x)+(-4-4 x) \log ^2(x)\right )}{x^2 (2+x)^2} \, dx}{8 (i \pi +\log (5-\log (5)))^2}\\ &=\frac {\int \left (\frac {96 \exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right )}{(2+x)^2}+\frac {32 \exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right )}{x (2+x)^2}+\frac {80 \exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right ) x}{(2+x)^2}+\frac {68 \exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right ) x^2}{(2+x)^2}+\frac {16 \exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right ) x^3}{(2+x)^2}+\frac {\exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right ) \left (8+8 x+4 x^2+17 x^3+4 x^4\right ) \log (x)}{x^2 (2+x)^2}-\frac {4 \exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right ) (1+x) \log ^2(x)}{x^2 (2+x)^2}\right ) \, dx}{8 (i \pi +\log (5-\log (5)))^2}\\ &=\frac {\int \frac {\exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right ) \left (8+8 x+4 x^2+17 x^3+4 x^4\right ) \log (x)}{x^2 (2+x)^2} \, dx}{8 (i \pi +\log (5-\log (5)))^2}-\frac {\int \frac {\exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right ) (1+x) \log ^2(x)}{x^2 (2+x)^2} \, dx}{2 (i \pi +\log (5-\log (5)))^2}+\frac {2 \int \frac {\exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right ) x^3}{(2+x)^2} \, dx}{(i \pi +\log (5-\log (5)))^2}+\frac {4 \int \frac {\exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right )}{x (2+x)^2} \, dx}{(i \pi +\log (5-\log (5)))^2}+\frac {17 \int \frac {\exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right ) x^2}{(2+x)^2} \, dx}{2 (i \pi +\log (5-\log (5)))^2}+\frac {10 \int \frac {\exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right ) x}{(2+x)^2} \, dx}{(i \pi +\log (5-\log (5)))^2}+\frac {12 \int \frac {\exp \left (\frac {\left (4+2 x+x^2\right ) (4 x+\log (x))^2}{x (32+16 x) (i \pi +\log (5-\log (5)))^2}\right )}{(2+x)^2} \, dx}{(i \pi +\log (5-\log (5)))^2}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.50, size = 82, normalized size = 2.05 \begin {gather*} e^{-\frac {\left (4+2 x+x^2\right ) \left (16 x^2+\log ^2(x)\right )}{16 x (2+x) (\pi -i \log (5-\log (5)))^2}} x^{-\frac {4+2 x+x^2}{2 (2+x) (\pi -i \log (5-\log (5)))^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.01, size = 64, normalized size = 1.60 \begin {gather*} e^{\left (\frac {16 \, x^{4} + 32 \, x^{3} + {\left (x^{2} + 2 \, x + 4\right )} \log \relax (x)^{2} + 64 \, x^{2} + 8 \, {\left (x^{3} + 2 \, x^{2} + 4 \, x\right )} \log \relax (x)}{16 \, {\left (x^{2} + 2 \, x\right )} \log \left (\log \relax (5) - 5\right )^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.62, size = 272, normalized size = 6.80 \begin {gather*} e^{\left (\frac {x^{4}}{x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}} + \frac {x^{3} \log \relax (x)}{2 \, {\left (x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}\right )}} + \frac {x^{2} \log \relax (x)^{2}}{16 \, {\left (x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}\right )}} + \frac {2 \, x^{3}}{x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}} + \frac {x^{2} \log \relax (x)}{x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}} + \frac {x \log \relax (x)^{2}}{8 \, {\left (x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}\right )}} + \frac {4 \, x^{2}}{x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}} + \frac {2 \, x \log \relax (x)}{x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}} + \frac {\log \relax (x)^{2}}{4 \, {\left (x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 35, normalized size = 0.88
method | result | size |
risch | \({\mathrm e}^{\frac {\left (x^{2}+2 x +4\right ) \left (4 x +\ln \relax (x )\right )^{2}}{16 x \left (2+x \right ) \ln \left (\ln \relax (5)-5\right )^{2}}}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {8 \, e^{\left (\frac {x^{4}}{x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}} + \frac {x^{3} \log \relax (x)}{2 \, {\left (x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}\right )}} + \frac {x^{2} \log \relax (x)^{2}}{16 \, {\left (x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}\right )}} + \frac {2 \, x^{3}}{x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}} + \frac {x^{2} \log \relax (x)}{x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}} + \frac {x \log \relax (x)^{2}}{8 \, {\left (x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}\right )}} + \frac {4 \, x^{2}}{x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}} + \frac {2 \, x \log \relax (x)}{x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}} + \frac {\log \relax (x)^{2}}{4 \, {\left (x^{2} \log \left (\log \relax (5) - 5\right )^{2} + 2 \, x \log \left (\log \relax (5) - 5\right )^{2}\right )}}\right )} \log \left (\log \relax (5) - 5\right )^{2}}{8 \, \log \left (\log \relax (5) - 5\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.93, size = 254, normalized size = 6.35 \begin {gather*} x^{\frac {16\,x^2}{16\,{\ln \left (\ln \relax (5)-5\right )}^2\,x^2+32\,{\ln \left (\ln \relax (5)-5\right )}^2\,x}+\frac {x^2+4}{2\,\left (x\,{\ln \left (\ln \relax (5)-5\right )}^2+2\,{\ln \left (\ln \relax (5)-5\right )}^2\right )}}\,{\mathrm {e}}^{\frac {4\,{\ln \relax (x)}^2}{16\,{\ln \left (\ln \relax (5)-5\right )}^2\,x^2+32\,{\ln \left (\ln \relax (5)-5\right )}^2\,x}}\,{\mathrm {e}}^{\frac {2\,x\,{\ln \relax (x)}^2}{16\,{\ln \left (\ln \relax (5)-5\right )}^2\,x^2+32\,{\ln \left (\ln \relax (5)-5\right )}^2\,x}}\,{\mathrm {e}}^{\frac {16\,x^4}{16\,{\ln \left (\ln \relax (5)-5\right )}^2\,x^2+32\,{\ln \left (\ln \relax (5)-5\right )}^2\,x}}\,{\mathrm {e}}^{\frac {32\,x^3}{16\,{\ln \left (\ln \relax (5)-5\right )}^2\,x^2+32\,{\ln \left (\ln \relax (5)-5\right )}^2\,x}}\,{\mathrm {e}}^{\frac {64\,x^2}{16\,{\ln \left (\ln \relax (5)-5\right )}^2\,x^2+32\,{\ln \left (\ln \relax (5)-5\right )}^2\,x}}\,{\mathrm {e}}^{\frac {x^2\,{\ln \relax (x)}^2}{16\,{\ln \left (\ln \relax (5)-5\right )}^2\,x^2+32\,{\ln \left (\ln \relax (5)-5\right )}^2\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________