Optimal. Leaf size=24 \[ \frac {1}{2} \log \left (\frac {256 e^{20}}{\left (5-e^x+\frac {5}{x}\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5-e^x x^2}{-5 x-5 x^2+e^x x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1-\frac {5 \left (1+x+x^2\right )}{x \left (-5-5 x+e^x x\right )}\right ) \, dx\\ &=-x-5 \int \frac {1+x+x^2}{x \left (-5-5 x+e^x x\right )} \, dx\\ &=-x-5 \int \left (\frac {1}{-5-5 x+e^x x}+\frac {1}{x \left (-5-5 x+e^x x\right )}+\frac {x}{-5-5 x+e^x x}\right ) \, dx\\ &=-x-5 \int \frac {1}{-5-5 x+e^x x} \, dx-5 \int \frac {1}{x \left (-5-5 x+e^x x\right )} \, dx-5 \int \frac {x}{-5-5 x+e^x x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 17, normalized size = 0.71 \begin {gather*} \log (x)-\log \left (5+5 x-e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 16, normalized size = 0.67 \begin {gather*} -\log \left (\frac {x e^{x} - 5 \, x - 5}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 15, normalized size = 0.62 \begin {gather*} -\log \left (x e^{x} - 5 \, x - 5\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 15, normalized size = 0.62
method | result | size |
risch | \(-\ln \left ({\mathrm e}^{x}-\frac {5 \left (x +1\right )}{x}\right )\) | \(15\) |
norman | \(-\ln \left ({\mathrm e}^{x} x -5 x -5\right )+\ln \relax (x )\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 16, normalized size = 0.67 \begin {gather*} -\log \left (\frac {x e^{x} - 5 \, x - 5}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 16, normalized size = 0.67 \begin {gather*} \ln \relax (x)-\ln \left (5\,x-x\,{\mathrm {e}}^x+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 14, normalized size = 0.58 \begin {gather*} - \log {\left (e^{x} + \frac {- 5 x - 5}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________