Optimal. Leaf size=23 \[ \frac {2}{-2+\frac {5}{x}-x+\log (6)-\frac {3 \log (x)}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 0.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16+2 x^2-6 \log (x)}{25-20 x-6 x^2+4 x^3+x^4+\left (10 x-4 x^2-2 x^3\right ) \log (6)+x^2 \log ^2(6)+\left (-30+12 x+6 x^2-6 x \log (6)\right ) \log (x)+9 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16+2 x^2-6 \log (x)}{25-20 x+4 x^3+x^4+\left (10 x-4 x^2-2 x^3\right ) \log (6)+x^2 \left (-6+\log ^2(6)\right )+\left (-30+12 x+6 x^2-6 x \log (6)\right ) \log (x)+9 \log ^2(x)} \, dx\\ &=\int \frac {2 \left (8+x^2-3 \log (x)\right )}{\left (5-x^2+x (-2+\log (6))-3 \log (x)\right )^2} \, dx\\ &=2 \int \frac {8+x^2-3 \log (x)}{\left (5-x^2+x (-2+\log (6))-3 \log (x)\right )^2} \, dx\\ &=2 \int \left (\frac {3+2 x^2+x (2-\log (6))}{\left (5-x^2-2 x \left (1-\frac {\log (6)}{2}\right )-3 \log (x)\right )^2}+\frac {1}{5-x^2-2 x \left (1-\frac {\log (6)}{2}\right )-3 \log (x)}\right ) \, dx\\ &=2 \int \frac {3+2 x^2+x (2-\log (6))}{\left (5-x^2-2 x \left (1-\frac {\log (6)}{2}\right )-3 \log (x)\right )^2} \, dx+2 \int \frac {1}{5-x^2-2 x \left (1-\frac {\log (6)}{2}\right )-3 \log (x)} \, dx\\ &=2 \int \left (\frac {3}{\left (5-x^2-2 x \left (1-\frac {\log (6)}{2}\right )-3 \log (x)\right )^2}+\frac {2 x^2}{\left (5-x^2-2 x \left (1-\frac {\log (6)}{2}\right )-3 \log (x)\right )^2}+\frac {x (2-\log (6))}{\left (5-x^2-2 x \left (1-\frac {\log (6)}{2}\right )-3 \log (x)\right )^2}\right ) \, dx+2 \int \frac {1}{5-x^2-2 x \left (1-\frac {\log (6)}{2}\right )-3 \log (x)} \, dx\\ &=2 \int \frac {1}{5-x^2-2 x \left (1-\frac {\log (6)}{2}\right )-3 \log (x)} \, dx+4 \int \frac {x^2}{\left (5-x^2-2 x \left (1-\frac {\log (6)}{2}\right )-3 \log (x)\right )^2} \, dx+6 \int \frac {1}{\left (5-x^2-2 x \left (1-\frac {\log (6)}{2}\right )-3 \log (x)\right )^2} \, dx+(2 (2-\log (6))) \int \frac {x}{\left (5-x^2-2 x \left (1-\frac {\log (6)}{2}\right )-3 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 22, normalized size = 0.96 \begin {gather*} -\frac {2 x}{-5+2 x+x^2-x \log (6)+3 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 22, normalized size = 0.96 \begin {gather*} -\frac {2 \, x}{x^{2} - x \log \relax (6) + 2 \, x + 3 \, \log \relax (x) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 22, normalized size = 0.96 \begin {gather*} -\frac {2 \, x}{x^{2} - x \log \relax (6) + 2 \, x + 3 \, \log \relax (x) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 24, normalized size = 1.04
method | result | size |
norman | \(\frac {2 x}{x \ln \relax (6)-x^{2}-2 x -3 \ln \relax (x )+5}\) | \(24\) |
risch | \(\frac {2 x}{x \ln \relax (2)+x \ln \relax (3)-x^{2}-2 x -3 \ln \relax (x )+5}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.98, size = 23, normalized size = 1.00 \begin {gather*} -\frac {2 \, x}{x^{2} - x {\left (\log \relax (3) + \log \relax (2) - 2\right )} + 3 \, \log \relax (x) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.98, size = 21, normalized size = 0.91 \begin {gather*} -\frac {2\,x}{3\,\ln \relax (x)-x\,\left (\ln \relax (6)-2\right )+x^2-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 22, normalized size = 0.96 \begin {gather*} - \frac {2 x}{x^{2} - x \log {\relax (6 )} + 2 x + 3 \log {\relax (x )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________