Optimal. Leaf size=31 \[ e^{2 e^{4 \left (-2+e^3+\left (-x+x^2\right )^2\right )}}+x+\frac {x^2}{3} \]
________________________________________________________________________________________
Rubi [F] time = 1.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{3} \left (3+2 x+\exp \left (-8+4 e^3+2 e^{-8+4 e^3+4 x^2-8 x^3+4 x^4}+4 x^2-8 x^3+4 x^4\right ) \left (48 x-144 x^2+96 x^3\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (3+2 x+\exp \left (-8+4 e^3+2 e^{-8+4 e^3+4 x^2-8 x^3+4 x^4}+4 x^2-8 x^3+4 x^4\right ) \left (48 x-144 x^2+96 x^3\right )\right ) \, dx\\ &=x+\frac {x^2}{3}+\frac {1}{3} \int \exp \left (-8+4 e^3+2 e^{-8+4 e^3+4 x^2-8 x^3+4 x^4}+4 x^2-8 x^3+4 x^4\right ) \left (48 x-144 x^2+96 x^3\right ) \, dx\\ &=x+\frac {x^2}{3}+\frac {1}{3} \int \exp \left (-8+4 e^3+2 e^{-8+4 e^3+4 x^2-8 x^3+4 x^4}+4 x^2-8 x^3+4 x^4\right ) x \left (48-144 x+96 x^2\right ) \, dx\\ &=x+\frac {x^2}{3}+\frac {1}{3} \int \exp \left (2 e^{-8+4 e^3+4 x^2-8 x^3+4 x^4}-8 \left (1-\frac {e^3}{2}\right )+4 x^2-8 x^3+4 x^4\right ) x \left (48-144 x+96 x^2\right ) \, dx\\ &=x+\frac {x^2}{3}+\frac {1}{3} \int \left (48 \exp \left (2 e^{-8+4 e^3+4 x^2-8 x^3+4 x^4}-8 \left (1-\frac {e^3}{2}\right )+4 x^2-8 x^3+4 x^4\right ) x-144 \exp \left (2 e^{-8+4 e^3+4 x^2-8 x^3+4 x^4}-8 \left (1-\frac {e^3}{2}\right )+4 x^2-8 x^3+4 x^4\right ) x^2+96 \exp \left (2 e^{-8+4 e^3+4 x^2-8 x^3+4 x^4}-8 \left (1-\frac {e^3}{2}\right )+4 x^2-8 x^3+4 x^4\right ) x^3\right ) \, dx\\ &=x+\frac {x^2}{3}+16 \int \exp \left (2 e^{-8+4 e^3+4 x^2-8 x^3+4 x^4}-8 \left (1-\frac {e^3}{2}\right )+4 x^2-8 x^3+4 x^4\right ) x \, dx+32 \int \exp \left (2 e^{-8+4 e^3+4 x^2-8 x^3+4 x^4}-8 \left (1-\frac {e^3}{2}\right )+4 x^2-8 x^3+4 x^4\right ) x^3 \, dx-48 \int \exp \left (2 e^{-8+4 e^3+4 x^2-8 x^3+4 x^4}-8 \left (1-\frac {e^3}{2}\right )+4 x^2-8 x^3+4 x^4\right ) x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 38, normalized size = 1.23 \begin {gather*} e^{2 e^{4 \left (-2+e^3\right )+4 x^2-8 x^3+4 x^4}}+x+\frac {x^2}{3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 103, normalized size = 3.32 \begin {gather*} \frac {1}{3} \, {\left ({\left (x^{2} + 3 \, x\right )} e^{\left (4 \, x^{4} - 8 \, x^{3} + 4 \, x^{2} + 4 \, e^{3} - 8\right )} + 3 \, e^{\left (4 \, x^{4} - 8 \, x^{3} + 4 \, x^{2} + 4 \, e^{3} + 2 \, e^{\left (4 \, x^{4} - 8 \, x^{3} + 4 \, x^{2} + 4 \, e^{3} - 8\right )} - 8\right )}\right )} e^{\left (-4 \, x^{4} + 8 \, x^{3} - 4 \, x^{2} - 4 \, e^{3} + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 16 \, {\left (2 \, x^{3} - 3 \, x^{2} + x\right )} e^{\left (4 \, x^{4} - 8 \, x^{3} + 4 \, x^{2} + 4 \, e^{3} + 2 \, e^{\left (4 \, x^{4} - 8 \, x^{3} + 4 \, x^{2} + 4 \, e^{3} - 8\right )} - 8\right )} + \frac {2}{3} \, x + 1\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 33, normalized size = 1.06
method | result | size |
default | \(x +\frac {x^{2}}{3}+{\mathrm e}^{2 \,{\mathrm e}^{4 \,{\mathrm e}^{3}+4 x^{4}-8 x^{3}+4 x^{2}-8}}\) | \(33\) |
norman | \(x +\frac {x^{2}}{3}+{\mathrm e}^{2 \,{\mathrm e}^{4 \,{\mathrm e}^{3}+4 x^{4}-8 x^{3}+4 x^{2}-8}}\) | \(33\) |
risch | \(x +\frac {x^{2}}{3}+{\mathrm e}^{2 \,{\mathrm e}^{4 \,{\mathrm e}^{3}+4 x^{4}-8 x^{3}+4 x^{2}-8}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 32, normalized size = 1.03 \begin {gather*} \frac {1}{3} \, x^{2} + x + e^{\left (2 \, e^{\left (4 \, x^{4} - 8 \, x^{3} + 4 \, x^{2} + 4 \, e^{3} - 8\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.60, size = 35, normalized size = 1.13 \begin {gather*} x+{\mathrm {e}}^{2\,{\mathrm {e}}^{4\,{\mathrm {e}}^3}\,{\mathrm {e}}^{-8}\,{\mathrm {e}}^{4\,x^2}\,{\mathrm {e}}^{4\,x^4}\,{\mathrm {e}}^{-8\,x^3}}+\frac {x^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 32, normalized size = 1.03 \begin {gather*} \frac {x^{2}}{3} + x + e^{2 e^{4 x^{4} - 8 x^{3} + 4 x^{2} - 8 + 4 e^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________