Optimal. Leaf size=29 \[ 5 \left (-4+x \left (-x+\frac {\log ^2(x)}{x-\log \left (\frac {2}{x}+x\right )}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-20 x^3-10 x^5+\left (20 x+10 x^3\right ) \log (x)+\left (-10+5 x^2\right ) \log ^2(x)+\left (40 x^2+20 x^4+\left (-20-10 x^2\right ) \log (x)+\left (-10-5 x^2\right ) \log ^2(x)\right ) \log \left (\frac {2+x^2}{x}\right )+\left (-20 x-10 x^3\right ) \log ^2\left (\frac {2+x^2}{x}\right )}{2 x^2+x^4+\left (-4 x-2 x^3\right ) \log \left (\frac {2+x^2}{x}\right )+\left (2+x^2\right ) \log ^2\left (\frac {2+x^2}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-10 x+\frac {10 \log (x)}{x-\log \left (\frac {2}{x}+x\right )}-\frac {5 \log ^2(x) \left (2-x^2+\left (2+x^2\right ) \log \left (\frac {2}{x}+x\right )\right )}{\left (2+x^2\right ) \left (x-\log \left (\frac {2}{x}+x\right )\right )^2}\right ) \, dx\\ &=-5 x^2-5 \int \frac {\log ^2(x) \left (2-x^2+\left (2+x^2\right ) \log \left (\frac {2}{x}+x\right )\right )}{\left (2+x^2\right ) \left (x-\log \left (\frac {2}{x}+x\right )\right )^2} \, dx+10 \int \frac {\log (x)}{x-\log \left (\frac {2}{x}+x\right )} \, dx\\ &=-5 x^2-5 \int \left (\frac {\left (2+2 x-x^2+x^3\right ) \log ^2(x)}{\left (2+x^2\right ) \left (x-\log \left (\frac {2}{x}+x\right )\right )^2}-\frac {\log ^2(x)}{x-\log \left (\frac {2}{x}+x\right )}\right ) \, dx+10 \int \frac {\log (x)}{x-\log \left (\frac {2}{x}+x\right )} \, dx\\ &=-5 x^2-5 \int \frac {\left (2+2 x-x^2+x^3\right ) \log ^2(x)}{\left (2+x^2\right ) \left (x-\log \left (\frac {2}{x}+x\right )\right )^2} \, dx+5 \int \frac {\log ^2(x)}{x-\log \left (\frac {2}{x}+x\right )} \, dx+10 \int \frac {\log (x)}{x-\log \left (\frac {2}{x}+x\right )} \, dx\\ &=-5 x^2-5 \int \left (-\frac {\log ^2(x)}{\left (x-\log \left (\frac {2}{x}+x\right )\right )^2}+\frac {x \log ^2(x)}{\left (x-\log \left (\frac {2}{x}+x\right )\right )^2}+\frac {4 \log ^2(x)}{\left (2+x^2\right ) \left (x-\log \left (\frac {2}{x}+x\right )\right )^2}\right ) \, dx+5 \int \frac {\log ^2(x)}{x-\log \left (\frac {2}{x}+x\right )} \, dx+10 \int \frac {\log (x)}{x-\log \left (\frac {2}{x}+x\right )} \, dx\\ &=-5 x^2+5 \int \frac {\log ^2(x)}{\left (x-\log \left (\frac {2}{x}+x\right )\right )^2} \, dx-5 \int \frac {x \log ^2(x)}{\left (x-\log \left (\frac {2}{x}+x\right )\right )^2} \, dx+5 \int \frac {\log ^2(x)}{x-\log \left (\frac {2}{x}+x\right )} \, dx+10 \int \frac {\log (x)}{x-\log \left (\frac {2}{x}+x\right )} \, dx-20 \int \frac {\log ^2(x)}{\left (2+x^2\right ) \left (x-\log \left (\frac {2}{x}+x\right )\right )^2} \, dx\\ &=-5 x^2+5 \int \frac {\log ^2(x)}{\left (x-\log \left (\frac {2}{x}+x\right )\right )^2} \, dx-5 \int \frac {x \log ^2(x)}{\left (x-\log \left (\frac {2}{x}+x\right )\right )^2} \, dx+5 \int \frac {\log ^2(x)}{x-\log \left (\frac {2}{x}+x\right )} \, dx+10 \int \frac {\log (x)}{x-\log \left (\frac {2}{x}+x\right )} \, dx-20 \int \left (\frac {i \log ^2(x)}{2 \sqrt {2} \left (i \sqrt {2}-x\right ) \left (x-\log \left (\frac {2}{x}+x\right )\right )^2}+\frac {i \log ^2(x)}{2 \sqrt {2} \left (i \sqrt {2}+x\right ) \left (x-\log \left (\frac {2}{x}+x\right )\right )^2}\right ) \, dx\\ &=-5 x^2+5 \int \frac {\log ^2(x)}{\left (x-\log \left (\frac {2}{x}+x\right )\right )^2} \, dx-5 \int \frac {x \log ^2(x)}{\left (x-\log \left (\frac {2}{x}+x\right )\right )^2} \, dx+5 \int \frac {\log ^2(x)}{x-\log \left (\frac {2}{x}+x\right )} \, dx+10 \int \frac {\log (x)}{x-\log \left (\frac {2}{x}+x\right )} \, dx-\left (5 i \sqrt {2}\right ) \int \frac {\log ^2(x)}{\left (i \sqrt {2}-x\right ) \left (x-\log \left (\frac {2}{x}+x\right )\right )^2} \, dx-\left (5 i \sqrt {2}\right ) \int \frac {\log ^2(x)}{\left (i \sqrt {2}+x\right ) \left (x-\log \left (\frac {2}{x}+x\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 27, normalized size = 0.93 \begin {gather*} -5 x^2-\frac {5 x \log ^2(x)}{-x+\log \left (\frac {2}{x}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 44, normalized size = 1.52 \begin {gather*} -\frac {5 \, {\left (x^{3} - x \log \relax (x)^{2} - x^{2} \log \left (\frac {x^{2} + 2}{x}\right )\right )}}{x - \log \left (\frac {x^{2} + 2}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 27, normalized size = 0.93 \begin {gather*} -5 \, x^{2} + \frac {5 \, x \log \relax (x)^{2}}{x - \log \left (x^{2} + 2\right ) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 134, normalized size = 4.62
method | result | size |
risch | \(-5 x^{2}+\frac {10 x \ln \relax (x )^{2}}{-i \pi \,\mathrm {csgn}\left (i \left (x^{2}+2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+2\right )}{x}\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (x^{2}+2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+2\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right )+i \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+2\right )}{x}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+2\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+2 x +2 \ln \relax (x )-2 \ln \left (x^{2}+2\right )}\) | \(134\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 44, normalized size = 1.52 \begin {gather*} -\frac {5 \, {\left (x^{3} - x^{2} \log \left (x^{2} + 2\right ) + x^{2} \log \relax (x) - x \log \relax (x)^{2}\right )}}{x - \log \left (x^{2} + 2\right ) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.91, size = 171, normalized size = 5.90 \begin {gather*} 10\,\ln \relax (x)-\frac {\frac {5\,x\,\left (2\,x^3\,\ln \relax (x)+x^2\,{\ln \relax (x)}^2+4\,x\,\ln \relax (x)-2\,{\ln \relax (x)}^2\right )}{x^3-x^2+2\,x+2}-\frac {5\,x\,\ln \left (\frac {x^2+2}{x}\right )\,\left (x^2+2\right )\,\left ({\ln \relax (x)}^2+2\,\ln \relax (x)\right )}{x^3-x^2+2\,x+2}}{x-\ln \left (\frac {x^2+2}{x}\right )}+{\ln \relax (x)}^2\,\left (\frac {5\,x^2-10}{x^3-x^2+2\,x+2}+5\right )-5\,x^2+\frac {\ln \relax (x)\,\left (10\,x^2-20\right )}{x^3-x^2+2\,x+2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 24, normalized size = 0.83 \begin {gather*} - 5 x^{2} - \frac {5 x \log {\relax (x )}^{2}}{- x + \log {\left (\frac {x^{2} + 2}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________