Optimal. Leaf size=19 \[ \frac {x}{e^{4+x^3}-\frac {16}{-4+x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {64-32 x+e^{4+x^3} \left (16-8 x+x^2-48 x^3+24 x^4-3 x^5\right )}{256+e^{4+x^3} (128-32 x)+e^{8+2 x^3} \left (16-8 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-32 (-2+x)-e^{4+x^3} (-4+x)^2 \left (-1+3 x^3\right )}{\left (16-e^{4+x^3} (-4+x)\right )^2} \, dx\\ &=\int \left (-\frac {16 x \left (1-12 x^2+3 x^3\right )}{\left (-16-4 e^{4+x^3}+e^{4+x^3} x\right )^2}-\frac {4-x-12 x^3+3 x^4}{-16-4 e^{4+x^3}+e^{4+x^3} x}\right ) \, dx\\ &=-\left (16 \int \frac {x \left (1-12 x^2+3 x^3\right )}{\left (-16-4 e^{4+x^3}+e^{4+x^3} x\right )^2} \, dx\right )-\int \frac {4-x-12 x^3+3 x^4}{-16-4 e^{4+x^3}+e^{4+x^3} x} \, dx\\ &=-\left (16 \int \frac {x \left (1-12 x^2+3 x^3\right )}{\left (16-e^{4+x^3} (-4+x)\right )^2} \, dx\right )-\int \left (\frac {4}{-16-4 e^{4+x^3}+e^{4+x^3} x}-\frac {x}{-16-4 e^{4+x^3}+e^{4+x^3} x}-\frac {12 x^3}{-16-4 e^{4+x^3}+e^{4+x^3} x}+\frac {3 x^4}{-16-4 e^{4+x^3}+e^{4+x^3} x}\right ) \, dx\\ &=-\left (3 \int \frac {x^4}{-16-4 e^{4+x^3}+e^{4+x^3} x} \, dx\right )-4 \int \frac {1}{-16-4 e^{4+x^3}+e^{4+x^3} x} \, dx+12 \int \frac {x^3}{-16-4 e^{4+x^3}+e^{4+x^3} x} \, dx-16 \int \left (\frac {x}{\left (-16-4 e^{4+x^3}+e^{4+x^3} x\right )^2}-\frac {12 x^3}{\left (-16-4 e^{4+x^3}+e^{4+x^3} x\right )^2}+\frac {3 x^4}{\left (-16-4 e^{4+x^3}+e^{4+x^3} x\right )^2}\right ) \, dx+\int \frac {x}{-16-4 e^{4+x^3}+e^{4+x^3} x} \, dx\\ &=-\left (3 \int \frac {x^4}{-16+e^{4+x^3} (-4+x)} \, dx\right )-4 \int \frac {1}{-16+e^{4+x^3} (-4+x)} \, dx+12 \int \frac {x^3}{-16+e^{4+x^3} (-4+x)} \, dx-16 \int \frac {x}{\left (-16-4 e^{4+x^3}+e^{4+x^3} x\right )^2} \, dx-48 \int \frac {x^4}{\left (-16-4 e^{4+x^3}+e^{4+x^3} x\right )^2} \, dx+192 \int \frac {x^3}{\left (-16-4 e^{4+x^3}+e^{4+x^3} x\right )^2} \, dx+\int \frac {x}{-16+e^{4+x^3} (-4+x)} \, dx\\ &=-\left (3 \int \frac {x^4}{-16+e^{4+x^3} (-4+x)} \, dx\right )-4 \int \frac {1}{-16+e^{4+x^3} (-4+x)} \, dx+12 \int \frac {x^3}{-16+e^{4+x^3} (-4+x)} \, dx-16 \int \frac {x}{\left (16-e^{4+x^3} (-4+x)\right )^2} \, dx-48 \int \frac {x^4}{\left (16-e^{4+x^3} (-4+x)\right )^2} \, dx+192 \int \frac {x^3}{\left (16-e^{4+x^3} (-4+x)\right )^2} \, dx+\int \frac {x}{-16+e^{4+x^3} (-4+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.67, size = 20, normalized size = 1.05 \begin {gather*} \frac {(-4+x) x}{-16+e^{4+x^3} (-4+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.13, size = 22, normalized size = 1.16 \begin {gather*} \frac {x^{2} - 4 \, x}{{\left (x - 4\right )} e^{\left (x^{3} + 4\right )} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.14, size = 28, normalized size = 1.47 \begin {gather*} \frac {x^{2} - 4 \, x}{x e^{\left (x^{3} + 4\right )} - 4 \, e^{\left (x^{3} + 4\right )} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 26, normalized size = 1.37
method | result | size |
risch | \(\frac {\left (x -4\right ) x}{{\mathrm e}^{x^{3}+4} x -4 \,{\mathrm e}^{x^{3}+4}-16}\) | \(26\) |
norman | \(\frac {x^{2}-4 x}{{\mathrm e}^{x^{3}+4} x -4 \,{\mathrm e}^{x^{3}+4}-16}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.82, size = 26, normalized size = 1.37 \begin {gather*} \frac {x^{2} - 4 \, x}{{\left (x e^{4} - 4 \, e^{4}\right )} e^{\left (x^{3}\right )} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {32\,x+{\mathrm {e}}^{x^3+4}\,\left (3\,x^5-24\,x^4+48\,x^3-x^2+8\,x-16\right )-64}{{\mathrm {e}}^{2\,x^3+8}\,\left (x^2-8\,x+16\right )-{\mathrm {e}}^{x^3+4}\,\left (32\,x-128\right )+256} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 17, normalized size = 0.89 \begin {gather*} \frac {x^{2} - 4 x}{\left (x - 4\right ) e^{x^{3} + 4} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________