Optimal. Leaf size=24 \[ e^{-x+\frac {1}{9} \left (2+\frac {7 \left (\frac {1}{x}+x\right )}{x}\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.37, antiderivative size = 19, normalized size of antiderivative = 0.79, number of steps used = 3, number of rules used = 3, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {12, 6688, 6706} \begin {gather*} e^{\frac {49}{9 x^4}+\frac {14}{x^2}-x+9} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \frac {e^{\frac {49+126 x^2+81 x^4-9 x^5}{9 x^4}} \left (-196-252 x^2-9 x^5\right )}{x^5} \, dx\\ &=\frac {1}{9} \int \frac {e^{9+\frac {49}{9 x^4}+\frac {14}{x^2}-x} \left (-196-252 x^2-9 x^5\right )}{x^5} \, dx\\ &=e^{9+\frac {49}{9 x^4}+\frac {14}{x^2}-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 19, normalized size = 0.79 \begin {gather*} e^{9+\frac {49}{9 x^4}+\frac {14}{x^2}-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 23, normalized size = 0.96 \begin {gather*} e^{\left (-\frac {9 \, x^{5} - 81 \, x^{4} - 126 \, x^{2} - 49}{9 \, x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 16, normalized size = 0.67 \begin {gather*} e^{\left (-x + \frac {14}{x^{2}} + \frac {49}{9 \, x^{4}} + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 1.00
method | result | size |
gosper | \({\mathrm e}^{-\frac {9 x^{5}-81 x^{4}-126 x^{2}-49}{9 x^{4}}}\) | \(24\) |
norman | \({\mathrm e}^{\frac {-9 x^{5}+81 x^{4}+126 x^{2}+49}{9 x^{4}}}\) | \(24\) |
risch | \({\mathrm e}^{-\frac {9 x^{5}-81 x^{4}-126 x^{2}-49}{9 x^{4}}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 16, normalized size = 0.67 \begin {gather*} e^{\left (-x + \frac {14}{x^{2}} + \frac {49}{9 \, x^{4}} + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.65, size = 19, normalized size = 0.79 \begin {gather*} {\mathrm {e}}^{-x}\,{\mathrm {e}}^9\,{\mathrm {e}}^{\frac {14}{x^2}}\,{\mathrm {e}}^{\frac {49}{9\,x^4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 0.83 \begin {gather*} e^{\frac {- x^{5} + 9 x^{4} + 14 x^{2} + \frac {49}{9}}{x^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________