Optimal. Leaf size=21 \[ e^3 \left (2-e^{\frac {12 e^{-2 x}}{x}}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-2 x} \left (e^{3+2 x} x^2+e^{3+\frac {12 e^{-2 x}}{x}} (12+24 x)\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^3+\frac {12 e^{3+\frac {12 e^{-2 x}}{x}-2 x} (1+2 x)}{x^2}\right ) \, dx\\ &=e^3 x+12 \int \frac {e^{3+\frac {12 e^{-2 x}}{x}-2 x} (1+2 x)}{x^2} \, dx\\ &=e^3 x+12 \int \left (\frac {e^{3+\frac {12 e^{-2 x}}{x}-2 x}}{x^2}+\frac {2 e^{3+\frac {12 e^{-2 x}}{x}-2 x}}{x}\right ) \, dx\\ &=e^3 x+12 \int \frac {e^{3+\frac {12 e^{-2 x}}{x}-2 x}}{x^2} \, dx+24 \int \frac {e^{3+\frac {12 e^{-2 x}}{x}-2 x}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 22, normalized size = 1.05 \begin {gather*} -e^{3+\frac {12 e^{-2 x}}{x}}+e^3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 32, normalized size = 1.52 \begin {gather*} x e^{3} - e^{\left (\frac {3 \, {\left (x e^{\left (2 \, x + 3\right )} + 4 \, e^{3}\right )} e^{\left (-2 \, x - 3\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 37, normalized size = 1.76 \begin {gather*} {\left (x e^{\left (-2 \, x + 3\right )} - e^{\left (-\frac {2 \, x^{2} - 3 \, x - 12 \, e^{\left (-2 \, x\right )}}{x}\right )}\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 22, normalized size = 1.05
method | result | size |
risch | \(x \,{\mathrm e}^{3}-{\mathrm e}^{\frac {3 x +12 \,{\mathrm e}^{-2 x}}{x}}\) | \(22\) |
norman | \(\frac {\left (x^{2} {\mathrm e}^{3} {\mathrm e}^{2 x}-x \,{\mathrm e}^{3} {\mathrm e}^{2 x} {\mathrm e}^{\frac {12 \,{\mathrm e}^{-2 x}}{x}}\right ) {\mathrm e}^{-2 x}}{x}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 19, normalized size = 0.90 \begin {gather*} x e^{3} - e^{\left (\frac {12 \, e^{\left (-2 \, x\right )}}{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.60, size = 17, normalized size = 0.81 \begin {gather*} {\mathrm {e}}^3\,\left (x-{\mathrm {e}}^{\frac {12\,{\mathrm {e}}^{-2\,x}}{x}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 17, normalized size = 0.81 \begin {gather*} x e^{3} - e^{3} e^{\frac {12 e^{- 2 x}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________