Optimal. Leaf size=21 \[ e^{\frac {x^3}{4+2 x+\log (2+x)}} (2+x) \]
________________________________________________________________________________________
Rubi [F] time = 3.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {x^3}{4+2 x+\log (2+x)}} \left (16+16 x+28 x^2+19 x^3+4 x^4+\left (8+4 x+6 x^2+3 x^3\right ) \log (2+x)+\log ^2(2+x)\right )}{16+16 x+4 x^2+(8+4 x) \log (2+x)+\log ^2(2+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {x^3}{4+2 x+\log (2+x)}} \left (16+16 x+28 x^2+19 x^3+4 x^4+\left (8+4 x+6 x^2+3 x^3\right ) \log (2+x)+\log ^2(2+x)\right )}{(4+2 x+\log (2+x))^2} \, dx\\ &=\int \left (e^{\frac {x^3}{4+2 x+\log (2+x)}}-\frac {e^{\frac {x^3}{4+2 x+\log (2+x)}} x^3 (5+2 x)}{(4+2 x+\log (2+x))^2}+\frac {3 e^{\frac {x^3}{4+2 x+\log (2+x)}} x^2 (2+x)}{4+2 x+\log (2+x)}\right ) \, dx\\ &=3 \int \frac {e^{\frac {x^3}{4+2 x+\log (2+x)}} x^2 (2+x)}{4+2 x+\log (2+x)} \, dx+\int e^{\frac {x^3}{4+2 x+\log (2+x)}} \, dx-\int \frac {e^{\frac {x^3}{4+2 x+\log (2+x)}} x^3 (5+2 x)}{(4+2 x+\log (2+x))^2} \, dx\\ &=3 \int \left (\frac {2 e^{\frac {x^3}{4+2 x+\log (2+x)}} x^2}{4+2 x+\log (2+x)}+\frac {e^{\frac {x^3}{4+2 x+\log (2+x)}} x^3}{4+2 x+\log (2+x)}\right ) \, dx+\int e^{\frac {x^3}{4+2 x+\log (2+x)}} \, dx-\int \left (\frac {5 e^{\frac {x^3}{4+2 x+\log (2+x)}} x^3}{(4+2 x+\log (2+x))^2}+\frac {2 e^{\frac {x^3}{4+2 x+\log (2+x)}} x^4}{(4+2 x+\log (2+x))^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {x^3}{4+2 x+\log (2+x)}} x^4}{(4+2 x+\log (2+x))^2} \, dx\right )+3 \int \frac {e^{\frac {x^3}{4+2 x+\log (2+x)}} x^3}{4+2 x+\log (2+x)} \, dx-5 \int \frac {e^{\frac {x^3}{4+2 x+\log (2+x)}} x^3}{(4+2 x+\log (2+x))^2} \, dx+6 \int \frac {e^{\frac {x^3}{4+2 x+\log (2+x)}} x^2}{4+2 x+\log (2+x)} \, dx+\int e^{\frac {x^3}{4+2 x+\log (2+x)}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.20, size = 21, normalized size = 1.00 \begin {gather*} e^{\frac {x^3}{4+2 x+\log (2+x)}} (2+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 20, normalized size = 0.95 \begin {gather*} {\left (x + 2\right )} e^{\left (\frac {x^{3}}{2 \, x + \log \left (x + 2\right ) + 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 37, normalized size = 1.76 \begin {gather*} x e^{\left (\frac {x^{3}}{2 \, x + \log \left (x + 2\right ) + 4}\right )} + 2 \, e^{\left (\frac {x^{3}}{2 \, x + \log \left (x + 2\right ) + 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 21, normalized size = 1.00
method | result | size |
risch | \(\left (2+x \right ) {\mathrm e}^{\frac {x^{3}}{\ln \left (2+x \right )+2 x +4}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (4 \, x^{4} + 19 \, x^{3} + 28 \, x^{2} + {\left (3 \, x^{3} + 6 \, x^{2} + 4 \, x + 8\right )} \log \left (x + 2\right ) + \log \left (x + 2\right )^{2} + 16 \, x + 16\right )} e^{\left (\frac {x^{3}}{2 \, x + \log \left (x + 2\right ) + 4}\right )}}{4 \, x^{2} + 4 \, {\left (x + 2\right )} \log \left (x + 2\right ) + \log \left (x + 2\right )^{2} + 16 \, x + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.89, size = 20, normalized size = 0.95 \begin {gather*} {\mathrm {e}}^{\frac {x^3}{2\,x+\ln \left (x+2\right )+4}}\,\left (x+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.85, size = 17, normalized size = 0.81 \begin {gather*} \left (x + 2\right ) e^{\frac {x^{3}}{2 x + \log {\left (x + 2 \right )} + 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________