Optimal. Leaf size=26 \[ \left (1+e^5-e^{-2-\log ^2((-2-x) x)}\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 1.72, antiderivative size = 28, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 5, integrand size = 78, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.064, Rules used = {1593, 6742, 6688, 29, 2288} \begin {gather*} \left (1+e^5\right ) \log (x)-e^{-\log ^2(-x (x+2))-2} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 1593
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-2-\log ^2\left (-2 x-x^2\right )} \left (-2-x+e^{2+\log ^2\left (-2 x-x^2\right )} \left (2+x+e^5 (2+x)\right )+(4+4 x) \log (x) \log \left (-2 x-x^2\right )\right )}{x (2+x)} \, dx\\ &=\int \left (\frac {e^{\log ^2(-x (2+x))-\log ^2\left (-2 x-x^2\right )} \left (1+e^5\right )}{x}+\frac {e^{-2-\log ^2\left (-2 x-x^2\right )} (-2-x+4 \log (x) \log (-x (2+x))+4 x \log (x) \log (-x (2+x)))}{x (2+x)}\right ) \, dx\\ &=\left (1+e^5\right ) \int \frac {e^{\log ^2(-x (2+x))-\log ^2\left (-2 x-x^2\right )}}{x} \, dx+\int \frac {e^{-2-\log ^2\left (-2 x-x^2\right )} (-2-x+4 \log (x) \log (-x (2+x))+4 x \log (x) \log (-x (2+x)))}{x (2+x)} \, dx\\ &=\left (1+e^5\right ) \int \frac {1}{x} \, dx+\int \frac {e^{-2-\log ^2(-x (2+x))} (-2-x+4 (1+x) \log (x) \log (-x (2+x)))}{x (2+x)} \, dx\\ &=-e^{-2-\log ^2(-x (2+x))} \log (x)+\left (1+e^5\right ) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 25, normalized size = 0.96 \begin {gather*} \left (1+e^5-e^{-2-\log ^2(-x (2+x))}\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 45, normalized size = 1.73 \begin {gather*} {\left ({\left (e^{5} + 1\right )} e^{\left (\log \left (-x^{2} - 2 \, x\right )^{2} + 2\right )} \log \relax (x) - \log \relax (x)\right )} e^{\left (-\log \left (-x^{2} - 2 \, x\right )^{2} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (4 \, {\left (x + 1\right )} \log \left (-x^{2} - 2 \, x\right ) \log \relax (x) + {\left ({\left (x + 2\right )} e^{5} + x + 2\right )} e^{\left (\log \left (-x^{2} - 2 \, x\right )^{2} + 2\right )} - x - 2\right )} e^{\left (-\log \left (-x^{2} - 2 \, x\right )^{2} - 2\right )}}{x^{2} + 2 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.36, size = 632, normalized size = 24.31
method | result | size |
risch | \({\mathrm e}^{5} \ln \relax (x )+\ln \relax (x )-\ln \relax (x ) x^{-i \pi \,\mathrm {csgn}\left (i x \right )} x^{-i \pi \,\mathrm {csgn}\left (i \left (2+x \right )\right )} \left (2+x \right )^{-i \pi \,\mathrm {csgn}\left (i x \right )} \left (2+x \right )^{-i \pi \,\mathrm {csgn}\left (i \left (2+x \right )\right )} \left (2+x \right )^{-2 \ln \relax (x )} \left (2+x \right )^{-2 i \pi } \left (2+x \right )^{i \pi \,\mathrm {csgn}\left (i x \left (2+x \right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (2+x \right )\right )} x^{i \pi \,\mathrm {csgn}\left (i x \left (2+x \right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (2+x \right )\right )} \left (2+x \right )^{-i \pi \,\mathrm {csgn}\left (i x \left (2+x \right )\right )} x^{2 i \pi } \left (2+x \right )^{2 i \pi } x^{-i \pi \,\mathrm {csgn}\left (i x \left (2+x \right )\right )} x^{-2 i \pi } {\mathrm e}^{-2+\pi ^{2}-\ln \relax (x )^{2}-\ln \left (2+x \right )^{2}} {\mathrm e}^{-\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (2+x \right )\right )} {\mathrm e}^{-\frac {\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{3} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )}{2}} {\mathrm e}^{-\frac {\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{3} \mathrm {csgn}\left (i \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i x \right )}{2}} {\mathrm e}^{\frac {\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )^{2}}{4}} {\mathrm e}^{\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (2+x \right )\right )} {\mathrm e}^{-\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{4} \mathrm {csgn}\left (i x \right )} {\mathrm e}^{\frac {\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{4} \mathrm {csgn}\left (i \left (2+x \right )\right )^{2}}{4}} {\mathrm e}^{-\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{4} \mathrm {csgn}\left (i \left (2+x \right )\right )} {\mathrm e}^{\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i x \right )} {\mathrm e}^{\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )} {\mathrm e}^{\frac {\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{5} \mathrm {csgn}\left (i x \right )}{2}} {\mathrm e}^{\frac {\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{5} \mathrm {csgn}\left (i \left (2+x \right )\right )}{2}} {\mathrm e}^{\frac {\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{4} \mathrm {csgn}\left (i x \right )^{2}}{4}} {\mathrm e}^{\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{3}} {\mathrm e}^{-2 \pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{2}} {\mathrm e}^{\frac {\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{6}}{4}} {\mathrm e}^{-\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{5}} {\mathrm e}^{\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{4}}\) | \(632\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.58, size = 56, normalized size = 2.15 \begin {gather*} -{\left (\log \left (x + 2\right ) - \log \relax (x)\right )} e^{5} + e^{5} \log \left (x + 2\right ) - e^{\left (-\log \relax (x)^{2} - 2 \, \log \relax (x) \log \left (-x - 2\right ) - \log \left (-x - 2\right )^{2} - 2\right )} \log \relax (x) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.96, size = 29, normalized size = 1.12 \begin {gather*} \ln \relax (x)\,\left ({\mathrm {e}}^5+1\right )-{\mathrm {e}}^{-{\ln \left (-x^2-2\,x\right )}^2-2}\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________