Optimal. Leaf size=30 \[ e^{(-1-x+\log (3))^2}+x^2-\left (\left (\frac {1}{5}-x\right )^2+x\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 36, normalized size of antiderivative = 1.20, number of steps used = 4, number of rules used = 3, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {12, 2227, 2209} \begin {gather*} -x^4-\frac {6 x^3}{5}+\frac {14 x^2}{25}-\frac {6 x}{125}+e^{(x+1-\log (3))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2209
Rule 2227
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{125} \int \left (-6+140 x-450 x^2-500 x^3+e^{1+2 x+x^2+(-2-2 x) \log (3)+\log ^2(3)} (250+250 x-250 \log (3))\right ) \, dx\\ &=-\frac {6 x}{125}+\frac {14 x^2}{25}-\frac {6 x^3}{5}-x^4+\frac {1}{125} \int e^{1+2 x+x^2+(-2-2 x) \log (3)+\log ^2(3)} (250+250 x-250 \log (3)) \, dx\\ &=-\frac {6 x}{125}+\frac {14 x^2}{25}-\frac {6 x^3}{5}-x^4+\frac {1}{125} \int e^{(1+x-\log (3))^2} (250+250 x-250 \log (3)) \, dx\\ &=e^{(1+x-\log (3))^2}-\frac {6 x}{125}+\frac {14 x^2}{25}-\frac {6 x^3}{5}-x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 47, normalized size = 1.57 \begin {gather*} 3^{-2-2 x} e^{1+2 x+x^2+\log ^2(3)}-\frac {6 x}{125}+\frac {14 x^2}{25}-\frac {6 x^3}{5}-x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 39, normalized size = 1.30 \begin {gather*} -x^{4} - \frac {6}{5} \, x^{3} + \frac {14}{25} \, x^{2} - \frac {6}{125} \, x + e^{\left (x^{2} - 2 \, {\left (x + 1\right )} \log \relax (3) + \log \relax (3)^{2} + 2 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 41, normalized size = 1.37 \begin {gather*} -x^{4} - \frac {6}{5} \, x^{3} + \frac {14}{25} \, x^{2} - \frac {6}{125} \, x + e^{\left (x^{2} - 2 \, x \log \relax (3) + \log \relax (3)^{2} + 2 \, x - 2 \, \log \relax (3) + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 41, normalized size = 1.37
method | result | size |
norman | \(-\frac {6 x}{125}+\frac {14 x^{2}}{25}-\frac {6 x^{3}}{5}-x^{4}+{\mathrm e}^{\ln \relax (3)^{2}+\left (-2 x -2\right ) \ln \relax (3)+x^{2}+2 x +1}\) | \(41\) |
risch | \(-\frac {6 x}{125}+\frac {14 x^{2}}{25}-\frac {6 x^{3}}{5}-x^{4}+3^{-2 x -2} {\mathrm e}^{\ln \relax (3)^{2}+1+x^{2}+2 x}\) | \(41\) |
default | \(-\frac {6 x}{125}+\frac {14 x^{2}}{25}-\frac {6 x^{3}}{5}-x^{4}+{\mathrm e}^{x^{2}+\left (-2 \ln \relax (3)+2\right ) x +\ln \relax (3)^{2}-2 \ln \relax (3)+1}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 39, normalized size = 1.30 \begin {gather*} -x^{4} - \frac {6}{5} \, x^{3} + \frac {14}{25} \, x^{2} - \frac {6}{125} \, x + e^{\left (x^{2} - 2 \, {\left (x + 1\right )} \log \relax (3) + \log \relax (3)^{2} + 2 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.59, size = 41, normalized size = 1.37 \begin {gather*} \frac {{\mathrm {e}}^{x^2+2\,x+{\ln \relax (3)}^2+1}}{9\,3^{2\,x}}-\frac {6\,x}{125}+\frac {14\,x^2}{25}-\frac {6\,x^3}{5}-x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.14, size = 46, normalized size = 1.53 \begin {gather*} - x^{4} - \frac {6 x^{3}}{5} + \frac {14 x^{2}}{25} - \frac {6 x}{125} + e^{x^{2} + 2 x + \left (- 2 x - 2\right ) \log {\relax (3 )} + 1 + \log {\relax (3 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________