Optimal. Leaf size=24 \[ \frac {4+e^{\frac {x^2}{2}}}{(8-x) (12+x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.48, antiderivative size = 53, normalized size of antiderivative = 2.21, number of steps used = 9, number of rules used = 4, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.078, Rules used = {6742, 74, 2220, 2204} \begin {gather*} \frac {e^{\frac {x^2}{2}}}{20 (x+12)}+\frac {e^{\frac {x^2}{2}}}{20 (8-x)}+\frac {4}{(x+12) (8-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 74
Rule 2204
Rule 2220
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {8 (2+x)}{(-8+x)^2 (12+x)^2}-\frac {e^{\frac {x^2}{2}} \left (-4-98 x+4 x^2+x^3\right )}{(-8+x)^2 (12+x)^2}\right ) \, dx\\ &=8 \int \frac {2+x}{(-8+x)^2 (12+x)^2} \, dx-\int \frac {e^{\frac {x^2}{2}} \left (-4-98 x+4 x^2+x^3\right )}{(-8+x)^2 (12+x)^2} \, dx\\ &=\frac {4}{(8-x) (12+x)}-\int \left (-\frac {e^{\frac {x^2}{2}}}{20 (-8+x)^2}+\frac {2 e^{\frac {x^2}{2}}}{5 (-8+x)}+\frac {e^{\frac {x^2}{2}}}{20 (12+x)^2}+\frac {3 e^{\frac {x^2}{2}}}{5 (12+x)}\right ) \, dx\\ &=\frac {4}{(8-x) (12+x)}+\frac {1}{20} \int \frac {e^{\frac {x^2}{2}}}{(-8+x)^2} \, dx-\frac {1}{20} \int \frac {e^{\frac {x^2}{2}}}{(12+x)^2} \, dx-\frac {2}{5} \int \frac {e^{\frac {x^2}{2}}}{-8+x} \, dx-\frac {3}{5} \int \frac {e^{\frac {x^2}{2}}}{12+x} \, dx\\ &=\frac {e^{\frac {x^2}{2}}}{20 (8-x)}+\frac {e^{\frac {x^2}{2}}}{20 (12+x)}+\frac {4}{(8-x) (12+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 23, normalized size = 0.96 \begin {gather*} -\frac {4+e^{\frac {x^2}{2}}}{-96+4 x+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 20, normalized size = 0.83 \begin {gather*} -\frac {e^{\left (\frac {1}{2} \, x^{2}\right )} + 4}{x^{2} + 4 \, x - 96} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 20, normalized size = 0.83 \begin {gather*} -\frac {e^{\left (\frac {1}{2} \, x^{2}\right )} + 4}{x^{2} + 4 \, x - 96} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 22, normalized size = 0.92
method | result | size |
norman | \(\frac {-4-{\mathrm e}^{\frac {x^{2}}{2}}}{x^{2}+4 x -96}\) | \(22\) |
risch | \(-\frac {4}{x^{2}+4 x -96}-\frac {{\mathrm e}^{\frac {x^{2}}{2}}}{x^{2}+4 x -96}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 49, normalized size = 2.04 \begin {gather*} -\frac {2 \, {\left (x + 2\right )}}{25 \, {\left (x^{2} + 4 \, x - 96\right )}} + \frac {2 \, {\left (x - 48\right )}}{25 \, {\left (x^{2} + 4 \, x - 96\right )}} - \frac {e^{\left (\frac {1}{2} \, x^{2}\right )}}{x^{2} + 4 \, x - 96} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 20, normalized size = 0.83 \begin {gather*} -\frac {{\mathrm {e}}^{\frac {x^2}{2}}+4}{x^2+4\,x-96} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 26, normalized size = 1.08 \begin {gather*} - \frac {e^{\frac {x^{2}}{2}}}{x^{2} + 4 x - 96} - \frac {4}{x^{2} + 4 x - 96} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________