Optimal. Leaf size=33 \[ 5+x+\frac {e^{2 e^{2+\frac {4}{x}-x}+2 x (x+\log (3))}}{\log ^2(\log (5))} \]
________________________________________________________________________________________
Rubi [A] time = 0.66, antiderivative size = 44, normalized size of antiderivative = 1.33, number of steps used = 4, number of rules used = 3, integrand size = 88, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {12, 14, 2288} \begin {gather*} \frac {2\ 9^x \log (3) \exp \left (-((1-2 x) x)+x+2 e^{-x+\frac {4}{x}+2}\right )}{\log (9) \log ^2(\log (5))}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{2 e^{\frac {4+2 x-x^2}{x}}+2 x^2+2 x \log (3)} \left (4 x^3+e^{\frac {4+2 x-x^2}{x}} \left (-8-2 x^2\right )+2 x^2 \log (3)\right )+x^2 \log ^2(\log (5))}{x^2} \, dx}{\log ^2(\log (5))}\\ &=\frac {\int \left (\frac {2\ 9^x e^{2 e^{2+\frac {4}{x}-x}+x (-1+2 x)} \left (-4 e^{2+\frac {4}{x}}-e^{2+\frac {4}{x}} x^2+2 e^x x^3+e^x x^2 \log (3)\right )}{x^2}+\log ^2(\log (5))\right ) \, dx}{\log ^2(\log (5))}\\ &=x+\frac {2 \int \frac {9^x e^{2 e^{2+\frac {4}{x}-x}+x (-1+2 x)} \left (-4 e^{2+\frac {4}{x}}-e^{2+\frac {4}{x}} x^2+2 e^x x^3+e^x x^2 \log (3)\right )}{x^2} \, dx}{\log ^2(\log (5))}\\ &=x+\frac {2\ 9^x e^{2 e^{2+\frac {4}{x}-x}+x-(1-2 x) x} \log (3)}{\log (9) \log ^2(\log (5))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.94, size = 31, normalized size = 0.94 \begin {gather*} x+\frac {9^x e^{2 \left (e^{2+\frac {4}{x}-x}+x^2\right )}}{\log ^2(\log (5))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 42, normalized size = 1.27 \begin {gather*} \frac {x \log \left (\log \relax (5)\right )^{2} + e^{\left (2 \, x^{2} + 2 \, x \log \relax (3) + 2 \, e^{\left (-\frac {x^{2} - 2 \, x - 4}{x}\right )}\right )}}{\log \left (\log \relax (5)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} \log \left (\log \relax (5)\right )^{2} + 2 \, {\left (2 \, x^{3} + x^{2} \log \relax (3) - {\left (x^{2} + 4\right )} e^{\left (-\frac {x^{2} - 2 \, x - 4}{x}\right )}\right )} e^{\left (2 \, x^{2} + 2 \, x \log \relax (3) + 2 \, e^{\left (-\frac {x^{2} - 2 \, x - 4}{x}\right )}\right )}}{x^{2} \log \left (\log \relax (5)\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 37, normalized size = 1.12
method | result | size |
risch | \(x +\frac {3^{2 x} {\mathrm e}^{2 \,{\mathrm e}^{-\frac {x^{2}-2 x -4}{x}}+2 x^{2}}}{\ln \left (\ln \relax (5)\right )^{2}}\) | \(37\) |
norman | \(\frac {\ln \left (\ln \relax (5)\right ) x^{2}+\frac {x \,{\mathrm e}^{2 \,{\mathrm e}^{\frac {-x^{2}+2 x +4}{x}}+2 x \ln \relax (3)+2 x^{2}}}{\ln \left (\ln \relax (5)\right )}}{x \ln \left (\ln \relax (5)\right )}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 39, normalized size = 1.18 \begin {gather*} \frac {x \log \left (\log \relax (5)\right )^{2} + e^{\left (2 \, x^{2} + 2 \, x \log \relax (3) + 2 \, e^{\left (-x + \frac {4}{x} + 2\right )}\right )}}{\log \left (\log \relax (5)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.46, size = 34, normalized size = 1.03 \begin {gather*} x+\frac {3^{2\,x}\,{\mathrm {e}}^{2\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^2\,{\mathrm {e}}^{4/x}}\,{\mathrm {e}}^{2\,x^2}}{{\ln \left (\ln \relax (5)\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 34, normalized size = 1.03 \begin {gather*} x + \frac {e^{2 x^{2} + 2 x \log {\relax (3 )} + 2 e^{\frac {- x^{2} + 2 x + 4}{x}}}}{\log {\left (\log {\relax (5 )} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________