Optimal. Leaf size=27 \[ \left (e^3+\frac {e^{\frac {1}{x^2 \log ^2(x)}}}{1-x}\right ) (3+\log (x)) \]
________________________________________________________________________________________
Rubi [B] time = 2.82, antiderivative size = 76, normalized size of antiderivative = 2.81, number of steps used = 5, number of rules used = 4, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {1594, 27, 6742, 2288} \begin {gather*} \frac {e^{\frac {1}{x^2 \log ^2(x)}} \left (-3 x-x \log ^2(x)+\log ^2(x)-4 x \log (x)+4 \log (x)+3\right )}{(1-x)^2 x^3 \left (\frac {1}{x^3 \log ^3(x)}+\frac {1}{x^3 \log ^2(x)}\right ) \log ^3(x)}+e^3 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^3 \left (x^2-2 x^3+x^4\right ) \log ^3(x)+e^{\frac {1}{x^2 \log ^2(x)}} \left (-6+6 x+(-8+8 x) \log (x)+(-2+2 x) \log ^2(x)+\left (x^2+2 x^3\right ) \log ^3(x)+x^3 \log ^4(x)\right )}{x^3 \left (1-2 x+x^2\right ) \log ^3(x)} \, dx\\ &=\int \frac {e^3 \left (x^2-2 x^3+x^4\right ) \log ^3(x)+e^{\frac {1}{x^2 \log ^2(x)}} \left (-6+6 x+(-8+8 x) \log (x)+(-2+2 x) \log ^2(x)+\left (x^2+2 x^3\right ) \log ^3(x)+x^3 \log ^4(x)\right )}{(-1+x)^2 x^3 \log ^3(x)} \, dx\\ &=\int \left (\frac {e^3}{x}+\frac {e^{\frac {1}{x^2 \log ^2(x)}} \left (-6+6 x-8 \log (x)+8 x \log (x)-2 \log ^2(x)+2 x \log ^2(x)+x^2 \log ^3(x)+2 x^3 \log ^3(x)+x^3 \log ^4(x)\right )}{(-1+x)^2 x^3 \log ^3(x)}\right ) \, dx\\ &=e^3 \log (x)+\int \frac {e^{\frac {1}{x^2 \log ^2(x)}} \left (-6+6 x-8 \log (x)+8 x \log (x)-2 \log ^2(x)+2 x \log ^2(x)+x^2 \log ^3(x)+2 x^3 \log ^3(x)+x^3 \log ^4(x)\right )}{(-1+x)^2 x^3 \log ^3(x)} \, dx\\ &=e^3 \log (x)+\frac {e^{\frac {1}{x^2 \log ^2(x)}} \left (3-3 x+4 \log (x)-4 x \log (x)+\log ^2(x)-x \log ^2(x)\right )}{(1-x)^2 x^3 \left (\frac {1}{x^3 \log ^3(x)}+\frac {1}{x^3 \log ^2(x)}\right ) \log ^3(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 42, normalized size = 1.56 \begin {gather*} \frac {-3 e^{\frac {1}{x^2 \log ^2(x)}}-e^{\frac {1}{x^2 \log ^2(x)}} \log (x)+e^3 (-1+x) \log (x)}{-1+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 30, normalized size = 1.11 \begin {gather*} \frac {{\left (x - 1\right )} e^{3} \log \relax (x) - {\left (\log \relax (x) + 3\right )} e^{\left (\frac {1}{x^{2} \log \relax (x)^{2}}\right )}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 27, normalized size = 1.00
method | result | size |
risch | \(\ln \relax (x ) {\mathrm e}^{3}-\frac {\left (3+\ln \relax (x )\right ) {\mathrm e}^{\frac {1}{x^{2} \ln \relax (x )^{2}}}}{x -1}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} e^{3} \log \relax (x) + \int \frac {{\left (x^{3} \log \relax (x)^{4} + {\left (2 \, x^{3} + x^{2}\right )} \log \relax (x)^{3} + 2 \, {\left (x - 1\right )} \log \relax (x)^{2} + 8 \, {\left (x - 1\right )} \log \relax (x) + 6 \, x - 6\right )} e^{\left (\frac {1}{x^{2} \log \relax (x)^{2}}\right )}}{{\left (x^{5} - 2 \, x^{4} + x^{3}\right )} \log \relax (x)^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {1}{x^2\,{\ln \relax (x)}^2}}\,\left (6\,x+{\ln \relax (x)}^3\,\left (2\,x^3+x^2\right )+\ln \relax (x)\,\left (8\,x-8\right )+x^3\,{\ln \relax (x)}^4+{\ln \relax (x)}^2\,\left (2\,x-2\right )-6\right )+{\mathrm {e}}^3\,{\ln \relax (x)}^3\,\left (x^4-2\,x^3+x^2\right )}{{\ln \relax (x)}^3\,\left (x^5-2\,x^4+x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 27, normalized size = 1.00 \begin {gather*} e^{3} \log {\relax (x )} + \frac {\left (- \log {\relax (x )} - 3\right ) e^{\frac {1}{x^{2} \log {\relax (x )}^{2}}}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________