Optimal. Leaf size=22 \[ \log \left (\frac {e^x \log \left (e^x x\right )}{3-e^{x^2}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.39, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 10, number of rules used = 8, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {6688, 6742, 6715, 2282, 36, 31, 29, 6684} \begin {gather*} -\log \left (3-e^{x^2}\right )+x+\log \left (\log \left (e^x x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 2282
Rule 6684
Rule 6688
Rule 6715
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-3+e^{x^2} (1-2 x)}{-3+e^{x^2}}+\frac {1+\frac {1}{x}}{\log \left (e^x x\right )}\right ) \, dx\\ &=\int \frac {-3+e^{x^2} (1-2 x)}{-3+e^{x^2}} \, dx+\int \frac {1+\frac {1}{x}}{\log \left (e^x x\right )} \, dx\\ &=\log \left (\log \left (e^x x\right )\right )+\int \left (1-2 x-\frac {6 x}{-3+e^{x^2}}\right ) \, dx\\ &=x-x^2+\log \left (\log \left (e^x x\right )\right )-6 \int \frac {x}{-3+e^{x^2}} \, dx\\ &=x-x^2+\log \left (\log \left (e^x x\right )\right )-3 \operatorname {Subst}\left (\int \frac {1}{-3+e^x} \, dx,x,x^2\right )\\ &=x-x^2+\log \left (\log \left (e^x x\right )\right )-3 \operatorname {Subst}\left (\int \frac {1}{(-3+x) x} \, dx,x,e^{x^2}\right )\\ &=x-x^2+\log \left (\log \left (e^x x\right )\right )-\operatorname {Subst}\left (\int \frac {1}{-3+x} \, dx,x,e^{x^2}\right )+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{x^2}\right )\\ &=x-\log \left (3-e^{x^2}\right )+\log \left (\log \left (e^x x\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 21, normalized size = 0.95 \begin {gather*} x-\log \left (3-e^{x^2}\right )+\log \left (\log \left (e^x x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 17, normalized size = 0.77 \begin {gather*} x - \log \left (e^{\left (x^{2}\right )} - 3\right ) + \log \left (\log \left (x e^{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 16, normalized size = 0.73 \begin {gather*} x + \log \left (x + \log \relax (x)\right ) - \log \left (e^{\left (x^{2}\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.09, size = 92, normalized size = 4.18
method | result | size |
risch | \(x -\ln \left ({\mathrm e}^{x^{2}}-3\right )+\ln \left (\ln \left ({\mathrm e}^{x}\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{2}+\pi \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right )^{3}+2 i \ln \relax (x )\right )}{2}\right )\) | \(92\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 16, normalized size = 0.73 \begin {gather*} x + \log \left (x + \log \relax (x)\right ) - \log \left (e^{\left (x^{2}\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.32, size = 16, normalized size = 0.73 \begin {gather*} x-\ln \left ({\mathrm {e}}^{x^2}-3\right )+\ln \left (x+\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 17, normalized size = 0.77 \begin {gather*} x - \log {\left (e^{x^{2}} - 3 \right )} + \log {\left (\log {\left (x e^{x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________