Optimal. Leaf size=17 \[ e^{3 e^{\frac {1}{9 e^8 x^2}} x} \]
________________________________________________________________________________________
Rubi [F] time = 0.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-8+\frac {1}{9 e^8 x^2}+3 e^{\frac {1}{9 e^8 x^2}} x} \left (-2+9 e^8 x^2\right )}{3 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-8+\frac {1}{9 e^8 x^2}+3 e^{\frac {1}{9 e^8 x^2}} x} \left (-2+9 e^8 x^2\right )}{x^2} \, dx\\ &=\frac {1}{3} \int \left (9 e^{\frac {1}{9 e^8 x^2}+3 e^{\frac {1}{9 e^8 x^2}} x}-\frac {2 e^{-8+\frac {1}{9 e^8 x^2}+3 e^{\frac {1}{9 e^8 x^2}} x}}{x^2}\right ) \, dx\\ &=-\left (\frac {2}{3} \int \frac {e^{-8+\frac {1}{9 e^8 x^2}+3 e^{\frac {1}{9 e^8 x^2}} x}}{x^2} \, dx\right )+3 \int e^{\frac {1}{9 e^8 x^2}+3 e^{\frac {1}{9 e^8 x^2}} x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 17, normalized size = 1.00 \begin {gather*} e^{3 e^{\frac {1}{9 e^8 x^2}} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 41, normalized size = 2.41 \begin {gather*} e^{\left (\frac {{\left (27 \, x^{3} e^{\left (\frac {e^{\left (-8\right )}}{9 \, x^{2}} + 8\right )} - 72 \, x^{2} e^{8} + 1\right )} e^{\left (-8\right )}}{9 \, x^{2}} - \frac {e^{\left (-8\right )}}{9 \, x^{2}} + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (9 \, x^{2} e^{8} - 2\right )} e^{\left (3 \, x e^{\left (\frac {e^{\left (-8\right )}}{9 \, x^{2}}\right )} + \frac {e^{\left (-8\right )}}{9 \, x^{2}} - 8\right )}}{3 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 13, normalized size = 0.76
method | result | size |
risch | \({\mathrm e}^{3 x \,{\mathrm e}^{\frac {{\mathrm e}^{-8}}{9 x^{2}}}}\) | \(13\) |
norman | \({\mathrm e}^{3 x \,{\mathrm e}^{\frac {{\mathrm e}^{-8}}{9 x^{2}}}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 12, normalized size = 0.71 \begin {gather*} e^{\left (3 \, x e^{\left (\frac {e^{\left (-8\right )}}{9 \, x^{2}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.35, size = 12, normalized size = 0.71 \begin {gather*} {\mathrm {e}}^{3\,x\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{-8}}{9\,x^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 15, normalized size = 0.88 \begin {gather*} e^{3 x e^{\frac {1}{9 x^{2} e^{8}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________