Optimal. Leaf size=24 \[ 16+\frac {5 x^2}{\left (\log \left (\frac {1}{e^4 x^2}\right )+\log \left (4 x^2\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 x}{\log ^2\left (\frac {1}{e^4 x^2}\right )+2 \log \left (\frac {1}{e^4 x^2}\right ) \log \left (4 x^2\right )+\log ^2\left (4 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=10 \int \frac {x}{\log ^2\left (\frac {1}{e^4 x^2}\right )+2 \log \left (\frac {1}{e^4 x^2}\right ) \log \left (4 x^2\right )+\log ^2\left (4 x^2\right )} \, dx\\ &=10 \int \frac {x}{\left (4-\log \left (\frac {1}{x^2}\right )-\log \left (4 x^2\right )\right )^2} \, dx\\ &=5 \operatorname {Subst}\left (\int \frac {1}{\left (4-\log \left (\frac {1}{x}\right )-\log (4 x)\right )^2} \, dx,x,x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.79 \begin {gather*} \frac {5 x^2}{\left (-4+\log \left (\frac {1}{x^2}\right )+\log \left (4 x^2\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 17, normalized size = 0.71 \begin {gather*} \frac {5 \, x^{2}}{4 \, {\left (\log \relax (2)^{2} - 4 \, \log \relax (2) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 17, normalized size = 0.71 \begin {gather*} \frac {5 \, x^{2}}{4 \, {\left (\log \relax (2)^{2} - 4 \, \log \relax (2) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.50, size = 20, normalized size = 0.83
method | result | size |
risch | \(-\frac {20 x^{2}}{-64+64 \ln \relax (2)-16 \ln \relax (2)^{2}}\) | \(20\) |
gosper | \(\frac {5 x^{2}}{\ln \left (4 x^{2}\right )^{2}+2 \ln \left (\frac {{\mathrm e}^{-4}}{x^{2}}\right ) \ln \left (4 x^{2}\right )+\ln \left (\frac {{\mathrm e}^{-4}}{x^{2}}\right )^{2}}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 17, normalized size = 0.71 \begin {gather*} \frac {5 \, x^{2}}{4 \, {\left (\log \relax (2)^{2} - 4 \, \log \relax (2) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 11, normalized size = 0.46 \begin {gather*} \frac {5\,x^2}{{\left (\ln \relax (4)-4\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 17, normalized size = 0.71 \begin {gather*} \frac {5 x^{2}}{- 16 \log {\relax (2 )} + 4 \log {\relax (2 )}^{2} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________