Optimal. Leaf size=19 \[ 10-\frac {e^{26+e^{2 x}+x}+x}{x^3} \]
________________________________________________________________________________________
Rubi [F] time = 0.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x+e^{26+e^{2 x}+x} \left (3-x-2 e^{2 x} x\right )}{x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {e^{26+e^{2 x}+x} (-3+x)}{x^4}+\frac {2}{x^3}-\frac {2 e^{26+e^{2 x}+3 x}}{x^3}\right ) \, dx\\ &=-\frac {1}{x^2}-2 \int \frac {e^{26+e^{2 x}+3 x}}{x^3} \, dx-\int \frac {e^{26+e^{2 x}+x} (-3+x)}{x^4} \, dx\\ &=-\frac {1}{x^2}-2 \int \frac {e^{26+e^{2 x}+3 x}}{x^3} \, dx-\int \left (-\frac {3 e^{26+e^{2 x}+x}}{x^4}+\frac {e^{26+e^{2 x}+x}}{x^3}\right ) \, dx\\ &=-\frac {1}{x^2}-2 \int \frac {e^{26+e^{2 x}+3 x}}{x^3} \, dx+3 \int \frac {e^{26+e^{2 x}+x}}{x^4} \, dx-\int \frac {e^{26+e^{2 x}+x}}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 17, normalized size = 0.89 \begin {gather*} -\frac {e^{26+e^{2 x}+x}+x}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 15, normalized size = 0.79 \begin {gather*} -\frac {x + e^{\left (x + e^{\left (2 \, x\right )} + 26\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 15, normalized size = 0.79 \begin {gather*} -\frac {x + e^{\left (x + e^{\left (2 \, x\right )} + 26\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 19, normalized size = 1.00
method | result | size |
norman | \(\frac {-x -{\mathrm e}^{{\mathrm e}^{2 x}+x +26}}{x^{3}}\) | \(19\) |
risch | \(-\frac {1}{x^{2}}-\frac {{\mathrm e}^{{\mathrm e}^{2 x}+x +26}}{x^{3}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 19, normalized size = 1.00 \begin {gather*} -\frac {1}{x^{2}} - \frac {e^{\left (x + e^{\left (2 \, x\right )} + 26\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.06, size = 17, normalized size = 0.89 \begin {gather*} -\frac {x+{\mathrm {e}}^{26}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^x}{x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 19, normalized size = 1.00 \begin {gather*} - \frac {1}{x^{2}} - \frac {e^{x + e^{2 x} + 26}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________