Optimal. Leaf size=25 \[ e^{\frac {1}{9} e^{-\frac {24 e^5}{5 x}}+e^x-x} \]
________________________________________________________________________________________
Rubi [F] time = 1.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {1}{9} e^{-\frac {24 e^5}{5 x}} \left (1+e^{\frac {24 e^5}{5 x}} \left (9 e^x-9 x\right )\right )-\frac {24 e^5}{5 x}\right ) \left (8 e^5+e^{\frac {24 e^5}{5 x}} \left (-15 x^2+15 e^x x^2\right )\right )}{15 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{15} \int \frac {\exp \left (\frac {1}{9} e^{-\frac {24 e^5}{5 x}} \left (1+e^{\frac {24 e^5}{5 x}} \left (9 e^x-9 x\right )\right )-\frac {24 e^5}{5 x}\right ) \left (8 e^5+e^{\frac {24 e^5}{5 x}} \left (-15 x^2+15 e^x x^2\right )\right )}{x^2} \, dx\\ &=\frac {1}{15} \int \left (15 \exp \left (\frac {1}{9} e^{-\frac {24 e^5}{5 x}} \left (1+e^{\frac {24 e^5}{5 x}} \left (9 e^x-9 x\right )\right )+x\right )-\frac {\exp \left (\frac {1}{9} e^{-\frac {24 e^5}{5 x}} \left (1+e^{\frac {24 e^5}{5 x}} \left (9 e^x-9 x\right )\right )-\frac {24 e^5}{5 x}\right ) \left (-8 e^5+15 e^{\frac {24 e^5}{5 x}} x^2\right )}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{15} \int \frac {\exp \left (\frac {1}{9} e^{-\frac {24 e^5}{5 x}} \left (1+e^{\frac {24 e^5}{5 x}} \left (9 e^x-9 x\right )\right )-\frac {24 e^5}{5 x}\right ) \left (-8 e^5+15 e^{\frac {24 e^5}{5 x}} x^2\right )}{x^2} \, dx\right )+\int \exp \left (\frac {1}{9} e^{-\frac {24 e^5}{5 x}} \left (1+e^{\frac {24 e^5}{5 x}} \left (9 e^x-9 x\right )\right )+x\right ) \, dx\\ &=-\left (\frac {1}{15} \int \frac {e^{\frac {1}{9} e^{-\frac {24 e^5}{5 x}}+e^x-\frac {24 e^5}{5 x}-x} \left (-8 e^5+15 e^{\frac {24 e^5}{5 x}} x^2\right )}{x^2} \, dx\right )+\int e^{\frac {1}{9} e^{-\frac {24 e^5}{5 x}}+e^x} \, dx\\ &=-\left (\frac {1}{15} \int \left (15 e^{\frac {1}{9} e^{-\frac {24 e^5}{5 x}}+e^x-x}-\frac {8 e^{5+\frac {1}{9} e^{-\frac {24 e^5}{5 x}}+e^x-\frac {24 e^5}{5 x}-x}}{x^2}\right ) \, dx\right )+\int e^{\frac {1}{9} e^{-\frac {24 e^5}{5 x}}+e^x} \, dx\\ &=\frac {8}{15} \int \frac {e^{5+\frac {1}{9} e^{-\frac {24 e^5}{5 x}}+e^x-\frac {24 e^5}{5 x}-x}}{x^2} \, dx+\int e^{\frac {1}{9} e^{-\frac {24 e^5}{5 x}}+e^x} \, dx-\int e^{\frac {1}{9} e^{-\frac {24 e^5}{5 x}}+e^x-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 25, normalized size = 1.00 \begin {gather*} e^{\frac {1}{9} e^{-\frac {24 e^5}{5 x}}+e^x-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 51, normalized size = 2.04 \begin {gather*} e^{\left (-\frac {{\left (9 \, {\left (5 \, x^{2} - 5 \, x e^{x} + 24 \, e^{5}\right )} e^{\left (\frac {24 \, e^{5}}{5 \, x}\right )} - 5 \, x\right )} e^{\left (-\frac {24 \, e^{5}}{5 \, x}\right )}}{45 \, x} + \frac {24 \, e^{5}}{5 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (15 \, {\left (x^{2} e^{x} - x^{2}\right )} e^{\left (\frac {24 \, e^{5}}{5 \, x}\right )} + 8 \, e^{5}\right )} e^{\left (-\frac {1}{9} \, {\left (9 \, {\left (x - e^{x}\right )} e^{\left (\frac {24 \, e^{5}}{5 \, x}\right )} - 1\right )} e^{\left (-\frac {24 \, e^{5}}{5 \, x}\right )} - \frac {24 \, e^{5}}{5 \, x}\right )}}{15 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.14, size = 43, normalized size = 1.72
method | result | size |
risch | \({\mathrm e}^{-\frac {\left (-9 \,{\mathrm e}^{\frac {5 x^{2}+24 \,{\mathrm e}^{5}}{5 x}}+9 \,{\mathrm e}^{\frac {24 \,{\mathrm e}^{5}}{5 x}} x -1\right ) {\mathrm e}^{-\frac {24 \,{\mathrm e}^{5}}{5 x}}}{9}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{15} \, \int \frac {{\left (15 \, {\left (x^{2} e^{x} - x^{2}\right )} e^{\left (\frac {24 \, e^{5}}{5 \, x}\right )} + 8 \, e^{5}\right )} e^{\left (-\frac {1}{9} \, {\left (9 \, {\left (x - e^{x}\right )} e^{\left (\frac {24 \, e^{5}}{5 \, x}\right )} - 1\right )} e^{\left (-\frac {24 \, e^{5}}{5 \, x}\right )} - \frac {24 \, e^{5}}{5 \, x}\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.36, size = 19, normalized size = 0.76 \begin {gather*} {\mathrm {e}}^{-x}\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{-\frac {24\,{\mathrm {e}}^5}{5\,x}}}{9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 34, normalized size = 1.36 \begin {gather*} e^{\left (\frac {\left (- 9 x + 9 e^{x}\right ) e^{\frac {24 e^{5}}{5 x}}}{9} + \frac {1}{9}\right ) e^{- \frac {24 e^{5}}{5 x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________