Optimal. Leaf size=16 \[ x+\frac {x}{e}+x^x (2+4 x) \]
________________________________________________________________________________________
Rubi [F] time = 0.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+e+x^x (e (6+4 x)+e (2+4 x) \log (x))}{e} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (1+e+x^x (e (6+4 x)+e (2+4 x) \log (x))\right ) \, dx}{e}\\ &=\frac {(1+e) x}{e}+\frac {\int x^x (e (6+4 x)+e (2+4 x) \log (x)) \, dx}{e}\\ &=\frac {(1+e) x}{e}+\frac {\int 2 e x^x (3+2 x+\log (x)+2 x \log (x)) \, dx}{e}\\ &=\frac {(1+e) x}{e}+2 \int x^x (3+2 x+\log (x)+2 x \log (x)) \, dx\\ &=\frac {(1+e) x}{e}+2 \int \left (3 x^x+2 x^{1+x}+x^x \log (x)+2 x^{1+x} \log (x)\right ) \, dx\\ &=\frac {(1+e) x}{e}+2 \int x^x \log (x) \, dx+4 \int x^{1+x} \, dx+4 \int x^{1+x} \log (x) \, dx+6 \int x^x \, dx\\ &=\frac {(1+e) x}{e}+2 x^x-2 \int x^x \, dx+4 \int x^{1+x} \, dx-4 \int \frac {\int x^{1+x} \, dx}{x} \, dx+6 \int x^x \, dx+(4 \log (x)) \int x^{1+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 17, normalized size = 1.06 \begin {gather*} x+\frac {x}{e}+2 x^x (1+2 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 21, normalized size = 1.31 \begin {gather*} {\left (2 \, {\left (2 \, x + 1\right )} x^{x} e + x e + x\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 29, normalized size = 1.81 \begin {gather*} 2 \, {\left (2 \, x x^{x} e + x^{x} e\right )} e^{\left (-1\right )} + {\left (x e + x\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 27, normalized size = 1.69
method | result | size |
norman | \(\left (1+{\mathrm e}\right ) {\mathrm e}^{-1} x +4 x \,{\mathrm e}^{x \ln \relax (x )}+2 \,{\mathrm e}^{x \ln \relax (x )}\) | \(27\) |
risch | \({\mathrm e}^{-1} x \,{\mathrm e}+{\mathrm e}^{-1} x +{\mathrm e}^{-1} \left (4 x \,{\mathrm e}+2 \,{\mathrm e}\right ) x^{x}\) | \(28\) |
default | \({\mathrm e}^{-1} \left (x +4 \,{\mathrm e} \,{\mathrm e}^{x \ln \relax (x )} x +2 \,{\mathrm e} \,{\mathrm e}^{x \ln \relax (x )}+x \,{\mathrm e}\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 22, normalized size = 1.38 \begin {gather*} {\left (2 \, {\left (2 \, x e + e\right )} x^{x} + x e + x\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.21, size = 17, normalized size = 1.06 \begin {gather*} x+4\,x\,x^x+x\,{\mathrm {e}}^{-1}+2\,x^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 20, normalized size = 1.25 \begin {gather*} \frac {x \left (1 + e\right )}{e} + \left (4 x + 2\right ) e^{x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________