Optimal. Leaf size=24 \[ \log \left (4 \left (-1-\frac {3}{-e+e^{\frac {4}{\log (x)}}+2 x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {12 e^{\frac {4}{\log (x)}}-6 x \log ^2(x)}{e^{\frac {8}{\log (x)}} x \log ^2(x)+e^{\frac {4}{\log (x)}} \left (3 x-2 e x+4 x^2\right ) \log ^2(x)+\left (e^2 x+6 x^2+4 x^3+e \left (-3 x-4 x^2\right )\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 \left (-2 e^{\frac {4}{\log (x)}}+x \log ^2(x)\right )}{x \left (3 \left (1-\frac {e}{3}\right ) e+2 \left (1-\frac {3}{2 e}\right ) e^{1+\frac {4}{\log (x)}}-e^{\frac {8}{\log (x)}}-6 \left (1-\frac {2 e}{3}\right ) x-4 e^{\frac {4}{\log (x)}} x-4 x^2\right ) \log ^2(x)} \, dx\\ &=6 \int \frac {-2 e^{\frac {4}{\log (x)}}+x \log ^2(x)}{x \left (3 \left (1-\frac {e}{3}\right ) e+2 \left (1-\frac {3}{2 e}\right ) e^{1+\frac {4}{\log (x)}}-e^{\frac {8}{\log (x)}}-6 \left (1-\frac {2 e}{3}\right ) x-4 e^{\frac {4}{\log (x)}} x-4 x^2\right ) \log ^2(x)} \, dx\\ &=6 \int \left (\frac {6 \left (1-\frac {e}{3}\right )+4 x+x \log ^2(x)}{3 x \left (3 \left (1-\frac {e}{3}\right )+e^{\frac {4}{\log (x)}}+2 x\right ) \log ^2(x)}-\frac {-2 e+4 x+x \log ^2(x)}{3 x \left (-e+e^{\frac {4}{\log (x)}}+2 x\right ) \log ^2(x)}\right ) \, dx\\ &=2 \int \frac {6 \left (1-\frac {e}{3}\right )+4 x+x \log ^2(x)}{x \left (3 \left (1-\frac {e}{3}\right )+e^{\frac {4}{\log (x)}}+2 x\right ) \log ^2(x)} \, dx-2 \int \frac {-2 e+4 x+x \log ^2(x)}{x \left (-e+e^{\frac {4}{\log (x)}}+2 x\right ) \log ^2(x)} \, dx\\ &=2 \int \left (\frac {1}{3 \left (1-\frac {e}{3}\right )+e^{\frac {4}{\log (x)}}+2 x}+\frac {4}{\left (3 \left (1-\frac {e}{3}\right )+e^{\frac {4}{\log (x)}}+2 x\right ) \log ^2(x)}+\frac {2 (3-e)}{x \left (3 \left (1-\frac {e}{3}\right )+e^{\frac {4}{\log (x)}}+2 x\right ) \log ^2(x)}\right ) \, dx-2 \int \left (\frac {1}{-e+e^{\frac {4}{\log (x)}}+2 x}+\frac {2 e}{\left (e-e^{\frac {4}{\log (x)}}-2 x\right ) x \log ^2(x)}+\frac {4}{\left (-e+e^{\frac {4}{\log (x)}}+2 x\right ) \log ^2(x)}\right ) \, dx\\ &=2 \int \frac {1}{3 \left (1-\frac {e}{3}\right )+e^{\frac {4}{\log (x)}}+2 x} \, dx-2 \int \frac {1}{-e+e^{\frac {4}{\log (x)}}+2 x} \, dx+8 \int \frac {1}{\left (3 \left (1-\frac {e}{3}\right )+e^{\frac {4}{\log (x)}}+2 x\right ) \log ^2(x)} \, dx-8 \int \frac {1}{\left (-e+e^{\frac {4}{\log (x)}}+2 x\right ) \log ^2(x)} \, dx+(4 (3-e)) \int \frac {1}{x \left (3 \left (1-\frac {e}{3}\right )+e^{\frac {4}{\log (x)}}+2 x\right ) \log ^2(x)} \, dx-(4 e) \int \frac {1}{\left (e-e^{\frac {4}{\log (x)}}-2 x\right ) x \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 36, normalized size = 1.50 \begin {gather*} -\log \left (-e+e^{\frac {4}{\log (x)}}+2 x\right )+\log \left (3-e+e^{\frac {4}{\log (x)}}+2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 36, normalized size = 1.50 \begin {gather*} \log \left (2 \, x - e + e^{\frac {4}{\log \relax (x)}} + 3\right ) - \log \left (2 \, x - e + e^{\frac {4}{\log \relax (x)}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 37, normalized size = 1.54
method | result | size |
risch | \(\ln \left ({\mathrm e}^{\frac {4}{\ln \relax (x )}}+3+2 x -{\mathrm e}\right )-\ln \left (2 x -{\mathrm e}+{\mathrm e}^{\frac {4}{\ln \relax (x )}}\right )\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 36, normalized size = 1.50 \begin {gather*} \log \left (2 \, x - e + e^{\frac {4}{\log \relax (x)}} + 3\right ) - \log \left (2 \, x - e + e^{\frac {4}{\log \relax (x)}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {12\,{\mathrm {e}}^{\frac {4}{\ln \relax (x)}}-6\,x\,{\ln \relax (x)}^2}{{\ln \relax (x)}^2\,\left (x\,{\mathrm {e}}^2-\mathrm {e}\,\left (4\,x^2+3\,x\right )+6\,x^2+4\,x^3\right )+x\,{\mathrm {e}}^{\frac {8}{\ln \relax (x)}}\,{\ln \relax (x)}^2+{\mathrm {e}}^{\frac {4}{\ln \relax (x)}}\,{\ln \relax (x)}^2\,\left (3\,x-2\,x\,\mathrm {e}+4\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 31, normalized size = 1.29 \begin {gather*} - \log {\left (2 x + e^{\frac {4}{\log {\relax (x )}}} - e \right )} + \log {\left (2 x + e^{\frac {4}{\log {\relax (x )}}} - e + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________