Optimal. Leaf size=20 \[ \log \left (\log \left (4+e^{e^{\log ^2\left (\frac {(3+x)^2}{e^6}\right )}}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 7.05, antiderivative size = 23, normalized size of antiderivative = 1.15, number of steps used = 2, number of rules used = 3, integrand size = 104, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {12, 6741, 6684} \begin {gather*} \log \left (\log \left (e^{e^{\log ^2\left (\frac {x^2+6 x+9}{e^6}\right )}}+4\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=4 \int \frac {\exp \left (e^{\log ^2\left (\frac {9+6 x+x^2}{e^6}\right )}+\log ^2\left (\frac {9+6 x+x^2}{e^6}\right )\right ) \log \left (\frac {9+6 x+x^2}{e^6}\right )}{\left (12+4 x+e^{e^{\log ^2\left (\frac {9+6 x+x^2}{e^6}\right )}} (3+x)\right ) \log \left (4+e^{e^{\log ^2\left (\frac {9+6 x+x^2}{e^6}\right )}}\right )} \, dx\\ &=\log \left (\log \left (4+e^{e^{\log ^2\left (\frac {9+6 x+x^2}{e^6}\right )}}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.12, size = 18, normalized size = 0.90 \begin {gather*} \log \left (\log \left (4+e^{e^{\left (-6+\log \left ((3+x)^2\right )\right )^2}}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 69, normalized size = 3.45 \begin {gather*} \log \left (\log \left ({\left (e^{\left (\log \left ({\left (x^{2} + 6 \, x + 9\right )} e^{\left (-6\right )}\right )^{2} + e^{\left (\log \left ({\left (x^{2} + 6 \, x + 9\right )} e^{\left (-6\right )}\right )^{2}\right )}\right )} + 4 \, e^{\left (\log \left ({\left (x^{2} + 6 \, x + 9\right )} e^{\left (-6\right )}\right )^{2}\right )}\right )} e^{\left (-\log \left ({\left (x^{2} + 6 \, x + 9\right )} e^{\left (-6\right )}\right )^{2}\right )}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.88, size = 150, normalized size = 7.50 \begin {gather*} \frac {1}{2} \, \log \left (18446744073709551616 \, \pi ^{2} + \log \left (e^{\left (\frac {e^{\left (\log \left (x^{2} + 6 \, x + 9\right )^{2} + 36\right )}}{x^{24} + 72 \, x^{23} + 2484 \, x^{22} + 54648 \, x^{21} + 860706 \, x^{20} + 10328472 \, x^{19} + 98120484 \, x^{18} + 756929448 \, x^{17} + 4825425231 \, x^{16} + 25735601232 \, x^{15} + 115810205544 \, x^{14} + 442184421168 \, x^{13} + 1437099368796 \, x^{12} + 3979659790512 \, x^{11} + 9380626649064 \, x^{10} + 18761253298128 \, x^{9} + 31659614940591 \, x^{8} + 44695926974952 \, x^{7} + 52145248137444 \, x^{6} + 49400761393368 \, x^{5} + 37050571045026 \, x^{4} + 21171754882872 \, x^{3} + 8661172452084 \, x^{2} + 2259436291848 \, x + 282429536481}\right )} + 4\right )^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.15, size = 0, normalized size = 0.00 \[\int \frac {4 \ln \left (\left (x^{2}+6 x +9\right ) {\mathrm e}^{-6}\right ) {\mathrm e}^{\ln \left (\left (x^{2}+6 x +9\right ) {\mathrm e}^{-6}\right )^{2}} {\mathrm e}^{{\mathrm e}^{\ln \left (\left (x^{2}+6 x +9\right ) {\mathrm e}^{-6}\right )^{2}}}}{\left (\left (3+x \right ) {\mathrm e}^{{\mathrm e}^{\ln \left (\left (x^{2}+6 x +9\right ) {\mathrm e}^{-6}\right )^{2}}}+4 x +12\right ) \ln \left ({\mathrm e}^{{\mathrm e}^{\ln \left (\left (x^{2}+6 x +9\right ) {\mathrm e}^{-6}\right )^{2}}}+4\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.82, size = 137, normalized size = 6.85 \begin {gather*} \log \left (\log \left (e^{\left (\frac {e^{\left (4 \, \log \left (x + 3\right )^{2} + 36\right )}}{x^{24} + 72 \, x^{23} + 2484 \, x^{22} + 54648 \, x^{21} + 860706 \, x^{20} + 10328472 \, x^{19} + 98120484 \, x^{18} + 756929448 \, x^{17} + 4825425231 \, x^{16} + 25735601232 \, x^{15} + 115810205544 \, x^{14} + 442184421168 \, x^{13} + 1437099368796 \, x^{12} + 3979659790512 \, x^{11} + 9380626649064 \, x^{10} + 18761253298128 \, x^{9} + 31659614940591 \, x^{8} + 44695926974952 \, x^{7} + 52145248137444 \, x^{6} + 49400761393368 \, x^{5} + 37050571045026 \, x^{4} + 21171754882872 \, x^{3} + 8661172452084 \, x^{2} + 2259436291848 \, x + 282429536481}\right )} + 4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.51, size = 25, normalized size = 1.25 \begin {gather*} \ln \left (\ln \left ({\mathrm {e}}^{{\mathrm {e}}^{{\ln \left ({\mathrm {e}}^{-6}\,x^2+6\,{\mathrm {e}}^{-6}\,x+9\,{\mathrm {e}}^{-6}\right )}^2}}+4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.33, size = 22, normalized size = 1.10 \begin {gather*} \log {\left (\log {\left (e^{e^{\log {\left (\frac {x^{2} + 6 x + 9}{e^{6}} \right )}^{2}}} + 4 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________