Optimal. Leaf size=31 \[ \frac {x}{5+e^{2 e^{2 e^{\log (x) \log \left (e^2+x\right )}}}-x+x^2} \]
________________________________________________________________________________________
Rubi [F] time = 13.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 x-x^3+e^2 \left (5-x^2\right )+e^{2 e^{2 e^{\log (x) \log \left (e^2+x\right )}}} \left (e^2+x+\exp \left (2 e^{\log (x) \log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \left (-4 x \log (x)+\left (-4 e^2-4 x\right ) \log \left (e^2+x\right )\right )\right )}{25 x-10 x^2+11 x^3-2 x^4+x^5+e^{4 e^{2 e^{\log (x) \log \left (e^2+x\right )}}} \left (e^2+x\right )+e^2 \left (25-10 x+11 x^2-2 x^3+x^4\right )+e^{2 e^{2 e^{\log (x) \log \left (e^2+x\right )}}} \left (10 x-2 x^2+2 x^3+e^2 \left (10-2 x+2 x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 \exp \left (2 \left (e^{2 x^{\log \left (e^2+x\right )}}+x^{\log \left (e^2+x\right )}\right )+\log (x) \log \left (e^2+x\right )\right ) x \log (x)-\left (e^2+x\right ) \left (-5-e^{2 e^{2 x^{\log \left (e^2+x\right )}}}+x^2+4 \exp \left (2 \left (e^{2 x^{\log \left (e^2+x\right )}}+x^{\log \left (e^2+x\right )}\right )+\log (x) \log \left (e^2+x\right )\right ) \log \left (e^2+x\right )\right )}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx\\ &=\int \left (\frac {5}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2}+\frac {e^{2 e^{2 x^{\log \left (e^2+x\right )}}}}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2}-\frac {x^2}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2}-\frac {4 \exp \left (2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \left (x \log (x)+e^2 \log \left (e^2+x\right )+x \log \left (e^2+x\right )\right )}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {\exp \left (2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \left (x \log (x)+e^2 \log \left (e^2+x\right )+x \log \left (e^2+x\right )\right )}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx\right )+5 \int \frac {1}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx+\int \frac {e^{2 e^{2 x^{\log \left (e^2+x\right )}}}}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx-\int \frac {x^2}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx\\ &=-\left (4 \int \left (\frac {\exp \left (2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) x \log (x)}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2}+\frac {\exp \left (2+2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \log \left (e^2+x\right )}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2}+\frac {\exp \left (2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) x \log \left (e^2+x\right )}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2}\right ) \, dx\right )+5 \int \frac {1}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx+\int \frac {e^{2 e^{2 x^{\log \left (e^2+x\right )}}}}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx-\int \frac {x^2}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx\\ &=-\left (4 \int \frac {\exp \left (2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) x \log (x)}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx\right )-4 \int \frac {\exp \left (2+2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \log \left (e^2+x\right )}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx-4 \int \frac {\exp \left (2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) x \log \left (e^2+x\right )}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx+5 \int \frac {1}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx+\int \frac {e^{2 e^{2 x^{\log \left (e^2+x\right )}}}}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx-\int \frac {x^2}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx\\ &=-\left (4 \int \left (\frac {\exp \left (2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \log (x)}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2}-\frac {\exp \left (2+2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \log (x)}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2}\right ) \, dx\right )-4 \int \frac {\exp \left (2+2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \log \left (e^2+x\right )}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx-4 \int \left (\frac {\exp \left (2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \log \left (e^2+x\right )}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2}-\frac {\exp \left (2+2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \log \left (e^2+x\right )}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2}\right ) \, dx+5 \int \frac {1}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx+\int \frac {e^{2 e^{2 x^{\log \left (e^2+x\right )}}}}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx-\int \frac {x^2}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx\\ &=-\left (4 \int \frac {\exp \left (2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \log (x)}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx\right )+4 \int \frac {\exp \left (2+2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \log (x)}{\left (e^2+x\right ) \left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx-4 \int \frac {\exp \left (2 e^{2 x^{\log \left (e^2+x\right )}}+2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )\right ) \log \left (e^2+x\right )}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx+5 \int \frac {1}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx+\int \frac {e^{2 e^{2 x^{\log \left (e^2+x\right )}}}}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx-\int \frac {x^2}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.81, size = 201, normalized size = 6.48 \begin {gather*} \frac {x \left (4 e^{2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )} x \left (5-x+x^2\right ) \log (x)+\left (e^2+x\right ) \left (x-2 x^2+4 e^{2 x^{\log \left (e^2+x\right )}+\log (x) \log \left (e^2+x\right )} \left (5-x+x^2\right ) \log \left (e^2+x\right )\right )\right )}{\left (5+e^{2 e^{2 x^{\log \left (e^2+x\right )}}}-x+x^2\right ) \left (4 e^{2 x^{\log \left (e^2+x\right )}} x^{1+\log \left (e^2+x\right )} \left (5-x+x^2\right ) \log (x)+\left (e^2+x\right ) \left (x-2 x^2+4 e^{2 x^{\log \left (e^2+x\right )}} x^{\log \left (e^2+x\right )} \left (5-x+x^2\right ) \log \left (e^2+x\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 27, normalized size = 0.87 \begin {gather*} \frac {x}{x^{2} - x + e^{\left (2 \, e^{\left (2 \, e^{\left (\log \left (x + e^{2}\right ) \log \relax (x)\right )}\right )}\right )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 28.45, size = 27, normalized size = 0.87 \begin {gather*} \frac {x}{x^{2} - x + e^{\left (2 \, e^{\left (2 \, e^{\left (\log \left (x + e^{2}\right ) \log \relax (x)\right )}\right )}\right )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 26, normalized size = 0.84
method | result | size |
risch | \(\frac {x}{x^{2}-x +{\mathrm e}^{2 \,{\mathrm e}^{2 \left (x +{\mathrm e}^{2}\right )^{\ln \relax (x )}}}+5}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 27, normalized size = 0.87 \begin {gather*} \frac {x}{x^{2} - x + e^{\left (2 \, e^{\left (2 \, e^{\left (\log \left (x + e^{2}\right ) \log \relax (x)\right )}\right )}\right )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.93, size = 732, normalized size = 23.61 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________