Optimal. Leaf size=26 \[ 4+\log \left (3 e^{\frac {\log ^2(4 x (2+x))}{\log ^2(\log (x))}}\right )+x \log (x) \]
________________________________________________________________________________________
Rubi [F] time = 1.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(-4-2 x) \log ^2\left (8 x+4 x^2\right )+(4+4 x) \log (x) \log \left (8 x+4 x^2\right ) \log (\log (x))+\left (\left (2 x+x^2\right ) \log (x)+\left (2 x+x^2\right ) \log ^2(x)\right ) \log ^3(\log (x))}{\left (2 x+x^2\right ) \log (x) \log ^3(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(-4-2 x) \log ^2\left (8 x+4 x^2\right )+(4+4 x) \log (x) \log \left (8 x+4 x^2\right ) \log (\log (x))+\left (\left (2 x+x^2\right ) \log (x)+\left (2 x+x^2\right ) \log ^2(x)\right ) \log ^3(\log (x))}{x (2+x) \log (x) \log ^3(\log (x))} \, dx\\ &=\int \left (1+\log (x)-\frac {2 \log ^2(4 x (2+x))}{x \log (x) \log ^3(\log (x))}+\frac {4 (1+x) \log (4 x (2+x))}{x (2+x) \log ^2(\log (x))}\right ) \, dx\\ &=x-2 \int \frac {\log ^2(4 x (2+x))}{x \log (x) \log ^3(\log (x))} \, dx+4 \int \frac {(1+x) \log (4 x (2+x))}{x (2+x) \log ^2(\log (x))} \, dx+\int \log (x) \, dx\\ &=x \log (x)-2 \int \frac {\log ^2(4 x (2+x))}{x \log (x) \log ^3(\log (x))} \, dx+4 \int \left (\frac {\log (4 x (2+x))}{2 x \log ^2(\log (x))}+\frac {\log (4 x (2+x))}{2 (2+x) \log ^2(\log (x))}\right ) \, dx\\ &=x \log (x)-2 \int \frac {\log ^2(4 x (2+x))}{x \log (x) \log ^3(\log (x))} \, dx+2 \int \frac {\log (4 x (2+x))}{x \log ^2(\log (x))} \, dx+2 \int \frac {\log (4 x (2+x))}{(2+x) \log ^2(\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 20, normalized size = 0.77 \begin {gather*} x \log (x)+\frac {\log ^2(4 x (2+x))}{\log ^2(\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 28, normalized size = 1.08 \begin {gather*} \frac {x \log \relax (x) \log \left (\log \relax (x)\right )^{2} + \log \left (4 \, x^{2} + 8 \, x\right )^{2}}{\log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 44, normalized size = 1.69 \begin {gather*} x \log \relax (x) + \frac {\log \left (4 \, x + 8\right )^{2}}{\log \left (\log \relax (x)\right )^{2}} + \frac {2 \, \log \left (4 \, x + 8\right ) \log \relax (x)}{\log \left (\log \relax (x)\right )^{2}} + \frac {\log \relax (x)^{2}}{\log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.42, size = 541, normalized size = 20.81
method | result | size |
risch | \(x \ln \relax (x )+\frac {16 \ln \relax (2)^{2}+4 \ln \relax (x )^{2}+16 \ln \relax (2) \ln \relax (x )-8 i \ln \relax (2) \pi \mathrm {csgn}\left (i x \left (2+x \right )\right )^{3}-4 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x \left (2+x \right )\right )^{3}-4 i \ln \left (2+x \right ) \pi \mathrm {csgn}\left (i x \left (2+x \right )\right )^{3}+2 \pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{3} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )-\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )^{2}-4 \pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (2+x \right )\right )+2 \pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{3} \mathrm {csgn}\left (i \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i x \right )+4 \ln \left (2+x \right )^{2}+8 \ln \relax (x ) \ln \left (2+x \right )-\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{4} \mathrm {csgn}\left (i \left (2+x \right )\right )^{2}+2 \pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{5} \mathrm {csgn}\left (i x \right )+2 \pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{5} \mathrm {csgn}\left (i \left (2+x \right )\right )-\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{4} \mathrm {csgn}\left (i x \right )^{2}+16 \ln \relax (2) \ln \left (2+x \right )-\pi ^{2} \mathrm {csgn}\left (i x \left (2+x \right )\right )^{6}-4 i \ln \left (2+x \right ) \pi \,\mathrm {csgn}\left (i x \left (2+x \right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (2+x \right )\right )-4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \left (2+x \right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (2+x \right )\right )-8 i \ln \relax (2) \pi \,\mathrm {csgn}\left (i x \left (2+x \right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (2+x \right )\right )+4 i \ln \left (2+x \right ) \pi \mathrm {csgn}\left (i x \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i x \right )+4 i \ln \left (2+x \right ) \pi \mathrm {csgn}\left (i x \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )+8 i \ln \relax (2) \pi \mathrm {csgn}\left (i x \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i x \right )+8 i \ln \relax (2) \pi \mathrm {csgn}\left (i x \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )+4 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i x \right )+4 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )}{4 \ln \left (\ln \relax (x )\right )^{2}}\) | \(541\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 51, normalized size = 1.96 \begin {gather*} \frac {x \log \relax (x) \log \left (\log \relax (x)\right )^{2} + 4 \, \log \relax (2)^{2} + 2 \, {\left (2 \, \log \relax (2) + \log \relax (x)\right )} \log \left (x + 2\right ) + \log \left (x + 2\right )^{2} + 4 \, \log \relax (2) \log \relax (x) + \log \relax (x)^{2}}{\log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.64, size = 190, normalized size = 7.31 \begin {gather*} 2\,\ln \left (4\,x^2+8\,x\right )\,\ln \relax (x)-\frac {16\,{\ln \relax (x)}^2}{x^2+4\,x+4}+4\,{\ln \relax (x)}^2+\frac {{\ln \left (4\,x^2+8\,x\right )}^2}{{\ln \left (\ln \relax (x)\right )}^2}+x\,\ln \relax (x)-\frac {2\,\ln \left (4\,x^2+8\,x\right )\,\ln \relax (x)}{x+2}-\frac {16\,x\,{\ln \relax (x)}^2}{x^2+4\,x+4}-\frac {4\,\ln \left (4\,x^2+8\,x\right )\,\ln \relax (x)}{x^2+4\,x+4}-\frac {4\,x^2\,{\ln \relax (x)}^2}{x^2+4\,x+4}-\frac {6\,x\,\ln \left (4\,x^2+8\,x\right )\,\ln \relax (x)}{x^2+4\,x+4}-\frac {2\,x^2\,\ln \left (4\,x^2+8\,x\right )\,\ln \relax (x)}{x^2+4\,x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 22, normalized size = 0.85 \begin {gather*} x \log {\relax (x )} + \frac {\log {\left (4 x^{2} + 8 x \right )}^{2}}{\log {\left (\log {\relax (x )} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________