Optimal. Leaf size=27 \[ e^{\frac {3}{\frac {2+x}{x \log (x)}-\log \left (\log \left (\frac {3}{x}\right )\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 1.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^{-\frac {3 x}{-2-x+x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )}} \left ((6+3 x) \log \left (\frac {3}{x}\right )+6 \log \left (\frac {3}{x}\right ) \log (x)-3 x \log ^2(x)\right )}{\left (4+4 x+x^2\right ) \log \left (\frac {3}{x}\right )+\left (-4 x-2 x^2\right ) \log \left (\frac {3}{x}\right ) \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )+x^2 \log \left (\frac {3}{x}\right ) \log ^2(x) \log ^2\left (\log \left (\frac {3}{x}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^{\frac {3 x}{2+x-x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )}} \left (-3 x \log ^2(x)+3 \log \left (\frac {3}{x}\right ) (2+x+2 \log (x))\right )}{\log \left (\frac {3}{x}\right ) \left (2+x-x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )\right )^2} \, dx\\ &=\int \left (\frac {6 x^{\frac {3 x}{2+x-x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )}}}{\left (-2-x+x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )\right )^2}+\frac {3 x^{1+\frac {3 x}{2+x-x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )}}}{\left (-2-x+x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )\right )^2}+\frac {6 x^{\frac {3 x}{2+x-x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )}} \log (x)}{\left (-2-x+x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )\right )^2}-\frac {3 x^{1+\frac {3 x}{2+x-x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )}} \log ^2(x)}{\log \left (\frac {3}{x}\right ) \left (-2-x+x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )\right )^2}\right ) \, dx\\ &=3 \int \frac {x^{1+\frac {3 x}{2+x-x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )}}}{\left (-2-x+x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )\right )^2} \, dx-3 \int \frac {x^{1+\frac {3 x}{2+x-x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )}} \log ^2(x)}{\log \left (\frac {3}{x}\right ) \left (-2-x+x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )\right )^2} \, dx+6 \int \frac {x^{\frac {3 x}{2+x-x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )}}}{\left (-2-x+x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )\right )^2} \, dx+6 \int \frac {x^{\frac {3 x}{2+x-x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )}} \log (x)}{\left (-2-x+x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.61, size = 23, normalized size = 0.85 \begin {gather*} x^{-\frac {3 x}{-2-x+x \log (x) \log \left (\log \left (\frac {3}{x}\right )\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 46, normalized size = 1.70 \begin {gather*} e^{\left (-\frac {3 \, {\left (x \log \relax (3) - x \log \left (\frac {3}{x}\right )\right )}}{{\left (x \log \relax (3) - x \log \left (\frac {3}{x}\right )\right )} \log \left (\log \left (\frac {3}{x}\right )\right ) - x - 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.95, size = 25, normalized size = 0.93 \begin {gather*} \frac {1}{x^{\frac {3 \, x}{x \log \relax (x) \log \left (\log \left (\frac {3}{x}\right )\right ) - x - 2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.49, size = 25, normalized size = 0.93
method | result | size |
risch | \(x^{-\frac {3 x}{x \ln \relax (x ) \ln \left (\ln \relax (3)-\ln \relax (x )\right )-x -2}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.72, size = 69, normalized size = 2.56 \begin {gather*} e^{\left (-\frac {6 \, \log \relax (x)}{x \log \relax (x)^{2} \log \left (\log \relax (3) - \log \relax (x)\right )^{2} - 2 \, {\left (x \log \left (\log \relax (3) - \log \relax (x)\right ) + \log \left (\log \relax (3) - \log \relax (x)\right )\right )} \log \relax (x) + x + 2} - \frac {3 \, \log \relax (x)}{\log \relax (x) \log \left (\log \relax (3) - \log \relax (x)\right ) - 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.59, size = 24, normalized size = 0.89 \begin {gather*} {\mathrm {e}}^{\frac {3\,x\,\ln \relax (x)}{x-x\,\ln \left (\ln \left (\frac {1}{x}\right )+\ln \relax (3)\right )\,\ln \relax (x)+2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 5.12, size = 26, normalized size = 0.96 \begin {gather*} e^{- \frac {3 x \log {\relax (x )}}{x \log {\relax (x )} \log {\left (- \log {\relax (x )} + \log {\relax (3 )} \right )} - x - 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________