Optimal. Leaf size=20 \[ \frac {-5+x}{4 \log \left (\frac {5 (4+x)^4}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-20+19 x-3 x^2+\left (4 x+x^2\right ) \log \left (\frac {1280+1280 x+480 x^2+80 x^3+5 x^4}{x}\right )}{\left (16 x+4 x^2\right ) \log ^2\left (\frac {1280+1280 x+480 x^2+80 x^3+5 x^4}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-20+19 x-3 x^2+\left (4 x+x^2\right ) \log \left (\frac {1280+1280 x+480 x^2+80 x^3+5 x^4}{x}\right )}{x (16+4 x) \log ^2\left (\frac {1280+1280 x+480 x^2+80 x^3+5 x^4}{x}\right )} \, dx\\ &=\int \frac {-20+19 x-3 x^2+x (4+x) \log \left (\frac {5 (4+x)^4}{x}\right )}{4 x (4+x) \log ^2\left (\frac {5 (4+x)^4}{x}\right )} \, dx\\ &=\frac {1}{4} \int \frac {-20+19 x-3 x^2+x (4+x) \log \left (\frac {5 (4+x)^4}{x}\right )}{x (4+x) \log ^2\left (\frac {5 (4+x)^4}{x}\right )} \, dx\\ &=\frac {1}{4} \int \left (\frac {-20+19 x-3 x^2}{x (4+x) \log ^2\left (\frac {5 (4+x)^4}{x}\right )}+\frac {1}{\log \left (\frac {5 (4+x)^4}{x}\right )}\right ) \, dx\\ &=\frac {1}{4} \int \frac {-20+19 x-3 x^2}{x (4+x) \log ^2\left (\frac {5 (4+x)^4}{x}\right )} \, dx+\frac {1}{4} \int \frac {1}{\log \left (\frac {5 (4+x)^4}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 20, normalized size = 1.00 \begin {gather*} \frac {-5+x}{4 \log \left (\frac {5 (4+x)^4}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 31, normalized size = 1.55 \begin {gather*} \frac {x - 5}{4 \, \log \left (\frac {5 \, {\left (x^{4} + 16 \, x^{3} + 96 \, x^{2} + 256 \, x + 256\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 31, normalized size = 1.55 \begin {gather*} \frac {x - 5}{4 \, \log \left (\frac {5 \, {\left (x^{4} + 16 \, x^{3} + 96 \, x^{2} + 256 \, x + 256\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 33, normalized size = 1.65
method | result | size |
risch | \(\frac {x -5}{4 \ln \left (\frac {5 x^{4}+80 x^{3}+480 x^{2}+1280 x +1280}{x}\right )}\) | \(33\) |
norman | \(\frac {\frac {x}{4}-\frac {5}{4}}{\ln \left (\frac {5 x^{4}+80 x^{3}+480 x^{2}+1280 x +1280}{x}\right )}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 20, normalized size = 1.00 \begin {gather*} \frac {x - 5}{4 \, {\left (\log \relax (5) + 4 \, \log \left (x + 4\right ) - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 32, normalized size = 1.60 \begin {gather*} \frac {x-5}{4\,\ln \left (\frac {5\,x^4+80\,x^3+480\,x^2+1280\,x+1280}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 27, normalized size = 1.35 \begin {gather*} \frac {x - 5}{4 \log {\left (\frac {5 x^{4} + 80 x^{3} + 480 x^{2} + 1280 x + 1280}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________