Optimal. Leaf size=19 \[ x+3 \left (18 x+\frac {x^4}{4 \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 15, normalized size of antiderivative = 0.79, number of steps used = 8, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {12, 6742, 2306, 2309, 2178} \begin {gather*} \frac {3 x^4}{4 \log (x)}+55 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {-3 x^3+12 x^3 \log (x)+220 \log ^2(x)}{\log ^2(x)} \, dx\\ &=\frac {1}{4} \int \left (220-\frac {3 x^3}{\log ^2(x)}+\frac {12 x^3}{\log (x)}\right ) \, dx\\ &=55 x-\frac {3}{4} \int \frac {x^3}{\log ^2(x)} \, dx+3 \int \frac {x^3}{\log (x)} \, dx\\ &=55 x+\frac {3 x^4}{4 \log (x)}-3 \int \frac {x^3}{\log (x)} \, dx+3 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )\\ &=55 x+3 \text {Ei}(4 \log (x))+\frac {3 x^4}{4 \log (x)}-3 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )\\ &=55 x+\frac {3 x^4}{4 \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 15, normalized size = 0.79 \begin {gather*} 55 x+\frac {3 x^4}{4 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 17, normalized size = 0.89 \begin {gather*} \frac {3 \, x^{4} + 220 \, x \log \relax (x)}{4 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 13, normalized size = 0.68 \begin {gather*} \frac {3 \, x^{4}}{4 \, \log \relax (x)} + 55 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 0.74
method | result | size |
default | \(55 x +\frac {3 x^{4}}{4 \ln \relax (x )}\) | \(14\) |
risch | \(55 x +\frac {3 x^{4}}{4 \ln \relax (x )}\) | \(14\) |
norman | \(\frac {\frac {3 x^{4}}{4}+55 x \ln \relax (x )}{\ln \relax (x )}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.65, size = 19, normalized size = 1.00 \begin {gather*} 55 \, x + 3 \, {\rm Ei}\left (4 \, \log \relax (x)\right ) - 3 \, \Gamma \left (-1, -4 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.47, size = 13, normalized size = 0.68 \begin {gather*} 55\,x+\frac {3\,x^4}{4\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 12, normalized size = 0.63 \begin {gather*} \frac {3 x^{4}}{4 \log {\relax (x )}} + 55 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________