Optimal. Leaf size=25 \[ \frac {e^x}{\left (-\frac {e}{12}+e^x-x+x^2\right ) \log (2)} \]
________________________________________________________________________________________
Rubi [F] time = 1.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (144-12 e-432 x+144 x^2\right )}{144 e^{2 x} \log (2)+e^x \left (-24 e-288 x+288 x^2\right ) \log (2)+\left (e^2+144 x^2-288 x^3+144 x^4+e \left (24 x-24 x^2\right )\right ) \log (2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12 e^x \left (12-e-36 x+12 x^2\right )}{\left (e-12 e^x-12 (-1+x) x\right )^2 \log (2)} \, dx\\ &=\frac {12 \int \frac {e^x \left (12-e-36 x+12 x^2\right )}{\left (e-12 e^x-12 (-1+x) x\right )^2} \, dx}{\log (2)}\\ &=\frac {12 \int \left (-\frac {\left (1-\frac {12}{e}\right ) e^{1+x}}{\left (e-12 e^x+12 x-12 x^2\right )^2}-\frac {36 e^x x}{\left (-e+12 e^x-12 x+12 x^2\right )^2}+\frac {12 e^x x^2}{\left (-e+12 e^x-12 x+12 x^2\right )^2}\right ) \, dx}{\log (2)}\\ &=\frac {144 \int \frac {e^x x^2}{\left (-e+12 e^x-12 x+12 x^2\right )^2} \, dx}{\log (2)}-\frac {432 \int \frac {e^x x}{\left (-e+12 e^x-12 x+12 x^2\right )^2} \, dx}{\log (2)}+\frac {\left (12 \left (-1+\frac {12}{e}\right )\right ) \int \frac {e^{1+x}}{\left (e-12 e^x+12 x-12 x^2\right )^2} \, dx}{\log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 29, normalized size = 1.16 \begin {gather*} -\frac {e-12 (-1+x) x}{\left (e-12 e^x-12 (-1+x) x\right ) \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 40, normalized size = 1.60 \begin {gather*} -\frac {12 \, x^{2} - 12 \, x - e}{{\left (12 \, x^{2} - 12 \, x - e\right )} \log \relax (2) + 12 \, e^{x} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 42, normalized size = 1.68 \begin {gather*} -\frac {12 \, x^{2} - 12 \, x - e}{12 \, x^{2} \log \relax (2) - 12 \, x \log \relax (2) - e \log \relax (2) + 12 \, e^{x} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 26, normalized size = 1.04
method | result | size |
norman | \(-\frac {12 \,{\mathrm e}^{x}}{\ln \relax (2) \left (-12 x^{2}+{\mathrm e}-12 \,{\mathrm e}^{x}+12 x \right )}\) | \(26\) |
risch | \(-\frac {-12 x^{2}+{\mathrm e}+12 x}{\ln \relax (2) \left (-12 x^{2}+{\mathrm e}-12 \,{\mathrm e}^{x}+12 x \right )}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 42, normalized size = 1.68 \begin {gather*} -\frac {12 \, x^{2} - 12 \, x - e}{12 \, x^{2} \log \relax (2) - 12 \, x \log \relax (2) - e \log \relax (2) + 12 \, e^{x} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int \frac {{\mathrm {e}}^x\,\left (-144\,x^2+432\,x+12\,\mathrm {e}-144\right )}{144\,{\mathrm {e}}^{2\,x}\,\ln \relax (2)+\ln \relax (2)\,\left ({\mathrm {e}}^2+\mathrm {e}\,\left (24\,x-24\,x^2\right )+144\,x^2-288\,x^3+144\,x^4\right )-{\mathrm {e}}^x\,\ln \relax (2)\,\left (-288\,x^2+288\,x+24\,\mathrm {e}\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 41, normalized size = 1.64 \begin {gather*} \frac {- 12 x^{2} + 12 x + e}{12 x^{2} \log {\relax (2 )} - 12 x \log {\relax (2 )} + 12 e^{x} \log {\relax (2 )} - e \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________