Optimal. Leaf size=29 \[ 2 \left (1+\log (x)-\log (x) \left (-1-\log \left (\frac {(x-\log (3))^2}{(2+x)^2}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.41, antiderivative size = 153, normalized size of antiderivative = 5.28, number of steps used = 15, number of rules used = 7, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {6688, 2357, 2317, 2391, 2316, 2315, 2524} \begin {gather*} 4 \text {Li}_2\left (-\frac {x}{2}\right )-\frac {(8+\log (81)) \text {Li}_2\left (-\frac {x}{2}\right )}{2+\log (3)}-\frac {(8+\log (81)) \text {Li}_2\left (1-\frac {x}{\log (3)}\right )}{2+\log (3)}+4 \text {Li}_2\left (1-\frac {x}{\log (3)}\right )-\frac {(8+\log (81)) \log \left (\frac {x}{2}+1\right ) \log (x)}{2+\log (3)}+4 \log \left (\frac {x}{2}+1\right ) \log (x)+2 \left (\log \left (\frac {(x-\log (3))^2}{(x+2)^2}\right )+2\right ) \log (x)+\frac {(8+\log (81)) \log (\log (3)) \log (x-\log (3))}{2+\log (3)}-4 \log (\log (3)) \log (x-\log (3)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2315
Rule 2316
Rule 2317
Rule 2357
Rule 2391
Rule 2524
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {(8+\log (81)) \log (x)}{(2+x) (x-\log (3))}+\frac {2 \left (2+\log \left (\frac {(x-\log (3))^2}{(2+x)^2}\right )\right )}{x}\right ) \, dx\\ &=2 \int \frac {2+\log \left (\frac {(x-\log (3))^2}{(2+x)^2}\right )}{x} \, dx+(8+\log (81)) \int \frac {\log (x)}{(2+x) (x-\log (3))} \, dx\\ &=2 \log (x) \left (2+\log \left (\frac {(x-\log (3))^2}{(2+x)^2}\right )\right )-2 \int \frac {(2+x)^2 \left (\frac {2 (x-\log (3))}{(2+x)^2}-\frac {2 (x-\log (3))^2}{(2+x)^3}\right ) \log (x)}{(x-\log (3))^2} \, dx+(8+\log (81)) \int \left (-\frac {\log (x)}{(2+x) (2+\log (3))}+\frac {\log (x)}{(x-\log (3)) (2+\log (3))}\right ) \, dx\\ &=2 \log (x) \left (2+\log \left (\frac {(x-\log (3))^2}{(2+x)^2}\right )\right )-2 \int \left (-\frac {2 \log (x)}{2+x}+\frac {2 \log (x)}{x-\log (3)}\right ) \, dx-\frac {(8+\log (81)) \int \frac {\log (x)}{2+x} \, dx}{2+\log (3)}+\frac {(8+\log (81)) \int \frac {\log (x)}{x-\log (3)} \, dx}{2+\log (3)}\\ &=-\frac {(8+\log (81)) \log \left (1+\frac {x}{2}\right ) \log (x)}{2+\log (3)}+2 \log (x) \left (2+\log \left (\frac {(x-\log (3))^2}{(2+x)^2}\right )\right )+\frac {(8+\log (81)) \log (x-\log (3)) \log (\log (3))}{2+\log (3)}+4 \int \frac {\log (x)}{2+x} \, dx-4 \int \frac {\log (x)}{x-\log (3)} \, dx+\frac {(8+\log (81)) \int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx}{2+\log (3)}+\frac {(8+\log (81)) \int \frac {\log \left (\frac {x}{\log (3)}\right )}{x-\log (3)} \, dx}{2+\log (3)}\\ &=4 \log \left (1+\frac {x}{2}\right ) \log (x)-\frac {(8+\log (81)) \log \left (1+\frac {x}{2}\right ) \log (x)}{2+\log (3)}+2 \log (x) \left (2+\log \left (\frac {(x-\log (3))^2}{(2+x)^2}\right )\right )-4 \log (x-\log (3)) \log (\log (3))+\frac {(8+\log (81)) \log (x-\log (3)) \log (\log (3))}{2+\log (3)}-\frac {(8+\log (81)) \text {Li}_2\left (-\frac {x}{2}\right )}{2+\log (3)}-\frac {(8+\log (81)) \text {Li}_2\left (1-\frac {x}{\log (3)}\right )}{2+\log (3)}-4 \int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx-4 \int \frac {\log \left (\frac {x}{\log (3)}\right )}{x-\log (3)} \, dx\\ &=4 \log \left (1+\frac {x}{2}\right ) \log (x)-\frac {(8+\log (81)) \log \left (1+\frac {x}{2}\right ) \log (x)}{2+\log (3)}+2 \log (x) \left (2+\log \left (\frac {(x-\log (3))^2}{(2+x)^2}\right )\right )-4 \log (x-\log (3)) \log (\log (3))+\frac {(8+\log (81)) \log (x-\log (3)) \log (\log (3))}{2+\log (3)}+4 \text {Li}_2\left (-\frac {x}{2}\right )-\frac {(8+\log (81)) \text {Li}_2\left (-\frac {x}{2}\right )}{2+\log (3)}+4 \text {Li}_2\left (1-\frac {x}{\log (3)}\right )-\frac {(8+\log (81)) \text {Li}_2\left (1-\frac {x}{\log (3)}\right )}{2+\log (3)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 38, normalized size = 1.31 \begin {gather*} \frac {\log (x) \left (8+\log (81)+(4+\log (9)) \log \left (\frac {x^2+\log ^2(3)-x \log (9)}{(2+x)^2}\right )\right )}{2+\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 34, normalized size = 1.17 \begin {gather*} 2 \, \log \relax (x) \log \left (\frac {x^{2} - 2 \, x \log \relax (3) + \log \relax (3)^{2}}{x^{2} + 4 \, x + 4}\right ) + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.58, size = 36, normalized size = 1.24 \begin {gather*} 2 \, \log \left (x^{2} - 2 \, x \log \relax (3) + \log \relax (3)^{2}\right ) \log \relax (x) - 2 \, \log \left (x^{2} + 4 \, x + 4\right ) \log \relax (x) + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.34, size = 310, normalized size = 10.69
method | result | size |
risch | \(4 \ln \relax (x ) \ln \left (\ln \relax (3)-x \right )-i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{\left (2+x \right )^{2}}\right ) \mathrm {csgn}\left (i \left (\ln \relax (3)-x \right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3)-x \right )^{2}}{\left (2+x \right )^{2}}\right )+i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{\left (2+x \right )^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3)-x \right )^{2}}{\left (2+x \right )^{2}}\right )^{2}+i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )^{2}\right )-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (2+x \right )\right ) \mathrm {csgn}\left (i \left (2+x \right )^{2}\right )^{2}+i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (2+x \right )^{2}\right )^{3}-i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (\ln \relax (3)-x \right )\right )^{2} \mathrm {csgn}\left (i \left (\ln \relax (3)-x \right )^{2}\right )+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (\ln \relax (3)-x \right )\right ) \mathrm {csgn}\left (i \left (\ln \relax (3)-x \right )^{2}\right )^{2}-i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (\ln \relax (3)-x \right )^{2}\right )^{3}+i \pi \ln \relax (x ) \mathrm {csgn}\left (i \left (\ln \relax (3)-x \right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3)-x \right )^{2}}{\left (2+x \right )^{2}}\right )^{2}-i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (3)-x \right )^{2}}{\left (2+x \right )^{2}}\right )^{3}-4 \ln \relax (x ) \ln \left (2+x \right )+4 \ln \relax (x )\) | \(310\) |
default | \(4 \ln \relax (x )-2 \ln \left (\frac {1}{2+x}\right ) \ln \left (\frac {\ln \relax (3)^{2}}{\left (2+x \right )^{2}}+\frac {4 \ln \relax (3)}{\left (2+x \right )^{2}}-\frac {2 \ln \relax (3)}{2+x}+\frac {4}{\left (2+x \right )^{2}}-\frac {4}{2+x}+1\right )+\frac {8 \ln \left (-\frac {2+\ln \relax (3)}{2+x}+1\right ) \ln \left (\frac {1}{2+x}\right )}{2+\ln \relax (3)}-\frac {8 \ln \left (-\frac {2+\ln \relax (3)}{2+x}+1\right ) \ln \left (\frac {2+\ln \relax (3)}{2+x}\right )}{2+\ln \relax (3)}-\frac {8 \dilog \left (\frac {2+\ln \relax (3)}{2+x}\right )}{2+\ln \relax (3)}+\frac {4 \ln \relax (3) \ln \left (-\frac {2+\ln \relax (3)}{2+x}+1\right ) \ln \left (\frac {1}{2+x}\right )}{2+\ln \relax (3)}-\frac {4 \ln \relax (3) \ln \left (-\frac {2+\ln \relax (3)}{2+x}+1\right ) \ln \left (\frac {2+\ln \relax (3)}{2+x}\right )}{2+\ln \relax (3)}-\frac {4 \ln \relax (3) \dilog \left (\frac {2+\ln \relax (3)}{2+x}\right )}{2+\ln \relax (3)}+2 \ln \left (-1+\frac {2}{2+x}\right ) \ln \left (\frac {\ln \relax (3)^{2}}{\left (2+x \right )^{2}}+\frac {4 \ln \relax (3)}{\left (2+x \right )^{2}}-\frac {2 \ln \relax (3)}{2+x}+\frac {4}{\left (2+x \right )^{2}}-\frac {4}{2+x}+1\right )-\frac {4 \ln \relax (3) \dilog \left (\frac {\left (2+\ln \relax (3)\right ) \left (-1+\frac {2}{2+x}\right )+\ln \relax (3)}{\ln \relax (3)}\right )}{2+\ln \relax (3)}-\frac {4 \ln \relax (3) \ln \left (-1+\frac {2}{2+x}\right ) \ln \left (\frac {\left (2+\ln \relax (3)\right ) \left (-1+\frac {2}{2+x}\right )+\ln \relax (3)}{\ln \relax (3)}\right )}{2+\ln \relax (3)}-\frac {8 \dilog \left (\frac {\left (2+\ln \relax (3)\right ) \left (-1+\frac {2}{2+x}\right )+\ln \relax (3)}{\ln \relax (3)}\right )}{2+\ln \relax (3)}-\frac {8 \ln \left (-1+\frac {2}{2+x}\right ) \ln \left (\frac {\left (2+\ln \relax (3)\right ) \left (-1+\frac {2}{2+x}\right )+\ln \relax (3)}{\ln \relax (3)}\right )}{2+\ln \relax (3)}-\frac {4 \ln \relax (3) \ln \relax (x ) \ln \left (1+\frac {x}{2}\right )}{2+\ln \relax (3)}-\frac {4 \ln \relax (3) \dilog \left (1+\frac {x}{2}\right )}{2+\ln \relax (3)}-\frac {4 \ln \relax (3) \ln \left (\frac {\ln \relax (3)-x}{\ln \relax (3)}\right ) \ln \left (\frac {x}{\ln \relax (3)}\right )}{2+\ln \relax (3)}+\frac {4 \ln \relax (3) \ln \left (\frac {\ln \relax (3)-x}{\ln \relax (3)}\right ) \ln \relax (x )}{2+\ln \relax (3)}-\frac {4 \ln \relax (3) \dilog \left (\frac {x}{\ln \relax (3)}\right )}{2+\ln \relax (3)}-\frac {8 \ln \relax (x ) \ln \left (1+\frac {x}{2}\right )}{2+\ln \relax (3)}-\frac {8 \dilog \left (1+\frac {x}{2}\right )}{2+\ln \relax (3)}-\frac {8 \ln \left (\frac {\ln \relax (3)-x}{\ln \relax (3)}\right ) \ln \left (\frac {x}{\ln \relax (3)}\right )}{2+\ln \relax (3)}+\frac {8 \ln \left (\frac {\ln \relax (3)-x}{\ln \relax (3)}\right ) \ln \relax (x )}{2+\ln \relax (3)}-\frac {8 \dilog \left (\frac {x}{\ln \relax (3)}\right )}{2+\ln \relax (3)}\) | \(628\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.71, size = 127, normalized size = 4.38 \begin {gather*} -4 \, {\left (\frac {2 \, \log \left (x - \log \relax (3)\right )}{\log \relax (3)^{2} + 2 \, \log \relax (3)} + \frac {\log \left (x + 2\right )}{\log \relax (3) + 2} - \frac {\log \relax (x)}{\log \relax (3)}\right )} \log \relax (3) - 4 \, {\left (\frac {\log \left (x - \log \relax (3)\right )}{\log \relax (3) + 2} - \frac {\log \left (x + 2\right )}{\log \relax (3) + 2}\right )} \log \relax (3) + 4 \, \log \left (x - \log \relax (3)\right ) \log \relax (x) - 4 \, \log \left (x + 2\right ) \log \relax (x) + \frac {4 \, \log \relax (3) \log \left (x - \log \relax (3)\right )}{\log \relax (3) + 2} + \frac {8 \, \log \left (x - \log \relax (3)\right )}{\log \relax (3) + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {8\,x-\ln \relax (3)\,\left (4\,x+8\right )+\ln \left (\frac {x^2-2\,\ln \relax (3)\,x+{\ln \relax (3)}^2}{x^2+4\,x+4}\right )\,\left (4\,x-\ln \relax (3)\,\left (2\,x+4\right )+2\,x^2\right )+\ln \relax (x)\,\left (8\,x+4\,x\,\ln \relax (3)\right )+4\,x^2}{2\,x^2+x^3-\ln \relax (3)\,\left (x^2+2\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 34, normalized size = 1.17 \begin {gather*} 2 \log {\relax (x )} \log {\left (\frac {x^{2} - 2 x \log {\relax (3 )} + \log {\relax (3 )}^{2}}{x^{2} + 4 x + 4} \right )} + 4 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________