Optimal. Leaf size=28 \[ \frac {3}{x \log \left (\frac {(-4+x)^2+x}{e^{4+x}+x+x^3}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 6.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {48 x+141 x^3-42 x^4+3 x^5+e^{4+x} \left (69 x-27 x^2+3 x^3\right )+\left (-48 x+21 x^2-51 x^3+21 x^4-3 x^5+e^{4+x} \left (-48+21 x-3 x^2\right )\right ) \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}{\left (16 x^3-7 x^4+17 x^5-7 x^6+x^7+e^{4+x} \left (16 x^2-7 x^3+x^4\right )\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (\frac {x \left (16+47 x^2-14 x^3+x^4+e^{4+x} \left (23-9 x+x^2\right )\right )}{\left (16-7 x+x^2\right ) \left (e^{4+x}+x+x^3\right )}-\log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )\right )}{x^2 \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\\ &=3 \int \frac {\frac {x \left (16+47 x^2-14 x^3+x^4+e^{4+x} \left (23-9 x+x^2\right )\right )}{\left (16-7 x+x^2\right ) \left (e^{4+x}+x+x^3\right )}-\log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}{x^2 \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\\ &=3 \int \left (-\frac {-1+x-3 x^2+x^3}{x \left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}+\frac {23 x-9 x^2+x^3-16 \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )+7 x \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )-x^2 \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}{x^2 \left (16-7 x+x^2\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}\right ) \, dx\\ &=-\left (3 \int \frac {-1+x-3 x^2+x^3}{x \left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\right )+3 \int \frac {23 x-9 x^2+x^3-16 \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )+7 x \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )-x^2 \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}{x^2 \left (16-7 x+x^2\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\\ &=-\left (3 \int \left (\frac {1}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}-\frac {1}{x \left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}-\frac {3 x}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}+\frac {x^2}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}\right ) \, dx\right )+3 \int \frac {\frac {x \left (23-9 x+x^2\right )}{16-7 x+x^2}-\log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}{x^2 \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\\ &=3 \int \left (\frac {23-9 x+x^2}{x \left (16-7 x+x^2\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}-\frac {1}{x^2 \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}\right ) \, dx-3 \int \frac {1}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+3 \int \frac {1}{x \left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {x^2}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+9 \int \frac {x}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\\ &=3 \int \frac {23-9 x+x^2}{x \left (16-7 x+x^2\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {1}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+3 \int \frac {1}{x \left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {x^2}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {1}{x^2 \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+9 \int \frac {x}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\\ &=3 \int \left (\frac {23}{16 x \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}+\frac {17-7 x}{16 \left (16-7 x+x^2\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}\right ) \, dx-3 \int \frac {1}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+3 \int \frac {1}{x \left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {x^2}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {1}{x^2 \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+9 \int \frac {x}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\\ &=\frac {3}{16} \int \frac {17-7 x}{\left (16-7 x+x^2\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {1}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+3 \int \frac {1}{x \left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {x^2}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {1}{x^2 \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+\frac {69}{16} \int \frac {1}{x \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+9 \int \frac {x}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\\ &=\frac {3}{16} \int \left (\frac {17}{\left (16-7 x+x^2\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}-\frac {7 x}{\left (16-7 x+x^2\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}\right ) \, dx-3 \int \frac {1}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+3 \int \frac {1}{x \left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {x^2}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {1}{x^2 \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+\frac {69}{16} \int \frac {1}{x \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+9 \int \frac {x}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\\ &=-\left (\frac {21}{16} \int \frac {x}{\left (16-7 x+x^2\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\right )-3 \int \frac {1}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+3 \int \frac {1}{x \left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {x^2}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {1}{x^2 \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+\frac {51}{16} \int \frac {1}{\left (16-7 x+x^2\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+\frac {69}{16} \int \frac {1}{x \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+9 \int \frac {x}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\\ &=-\left (\frac {21}{16} \int \left (\frac {1-\frac {7 i}{\sqrt {15}}}{\left (-7-i \sqrt {15}+2 x\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}+\frac {1+\frac {7 i}{\sqrt {15}}}{\left (-7+i \sqrt {15}+2 x\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}\right ) \, dx\right )-3 \int \frac {1}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+3 \int \frac {1}{x \left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {x^2}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {1}{x^2 \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+\frac {51}{16} \int \left (\frac {2 i}{\sqrt {15} \left (7+i \sqrt {15}-2 x\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}+\frac {2 i}{\sqrt {15} \left (-7+i \sqrt {15}+2 x\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )}\right ) \, dx+\frac {69}{16} \int \frac {1}{x \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+9 \int \frac {x}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\\ &=-\left (3 \int \frac {1}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\right )+3 \int \frac {1}{x \left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {x^2}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-3 \int \frac {1}{x^2 \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+\frac {69}{16} \int \frac {1}{x \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+9 \int \frac {x}{\left (e^{4+x}+x+x^3\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+\frac {1}{8} \left (17 i \sqrt {\frac {3}{5}}\right ) \int \frac {1}{\left (7+i \sqrt {15}-2 x\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx+\frac {1}{8} \left (17 i \sqrt {\frac {3}{5}}\right ) \int \frac {1}{\left (-7+i \sqrt {15}+2 x\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-\frac {1}{80} \left (7 \left (15-7 i \sqrt {15}\right )\right ) \int \frac {1}{\left (-7-i \sqrt {15}+2 x\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx-\frac {1}{80} \left (7 \left (15+7 i \sqrt {15}\right )\right ) \int \frac {1}{\left (-7+i \sqrt {15}+2 x\right ) \log ^2\left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 29, normalized size = 1.04 \begin {gather*} \frac {3}{x \log \left (\frac {16-7 x+x^2}{e^{4+x}+x+x^3}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 28, normalized size = 1.00 \begin {gather*} \frac {3}{x \log \left (\frac {x^{2} - 7 \, x + 16}{x^{3} + x + e^{\left (x + 4\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.60, size = 28, normalized size = 1.00 \begin {gather*} \frac {3}{x \log \left (\frac {x^{2} - 7 \, x + 16}{x^{3} + x + e^{\left (x + 4\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 197, normalized size = 7.04
method | result | size |
risch | \(\frac {6 i}{x \left (\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{4+x}+x^{3}+x}\right ) \mathrm {csgn}\left (i \left (x^{2}-7 x +16\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-7 x +16\right )}{{\mathrm e}^{4+x}+x^{3}+x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{4+x}+x^{3}+x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-7 x +16\right )}{{\mathrm e}^{4+x}+x^{3}+x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x^{2}-7 x +16\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-7 x +16\right )}{{\mathrm e}^{4+x}+x^{3}+x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (x^{2}-7 x +16\right )}{{\mathrm e}^{4+x}+x^{3}+x}\right )^{3}+2 i \ln \left (x^{2}-7 x +16\right )-2 i \ln \left ({\mathrm e}^{4+x}+x^{3}+x \right )\right )}\) | \(197\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.71, size = 29, normalized size = 1.04 \begin {gather*} -\frac {3}{x \log \left (x^{3} + x + e^{\left (x + 4\right )}\right ) - x \log \left (x^{2} - 7 \, x + 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.80, size = 29, normalized size = 1.04 \begin {gather*} \frac {3}{x\,\ln \left (\frac {x^2-7\,x+16}{x+{\mathrm {e}}^4\,{\mathrm {e}}^x+x^3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 22, normalized size = 0.79 \begin {gather*} \frac {3}{x \log {\left (\frac {x^{2} - 7 x + 16}{x^{3} + x + e^{x + 4}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________