Optimal. Leaf size=26 \[ 9 e^{\frac {1}{x}} \left (5+e^x\right ) \log ^2\left (\frac {1}{3} \left (e^x+x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 26.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (18 e^{\frac {1}{x}+2 x} x^2+180 e^{\frac {1}{x}} x^3+e^{\frac {1}{x}+x} \left (90 x^2+36 x^3\right )\right ) \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )+\left (-45 e^{\frac {1}{x}} x^2+e^{\frac {1}{x}+2 x} \left (-9+9 x^2\right )+e^{\frac {1}{x}+x} \left (-45-9 x^2+9 x^4\right )\right ) \log ^2\left (\frac {1}{3} \left (e^x+x^2\right )\right )}{e^x x^2+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 e^{\frac {1}{x}} \log \left (\frac {1}{3} \left (e^x+x^2\right )\right ) \left (2 \left (5+e^x\right ) x^2 \left (e^x+2 x\right )+\left (-5 x^2+e^{2 x} \left (-1+x^2\right )+e^x \left (-5-x^2+x^4\right )\right ) \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right )}{x^2 \left (e^x+x^2\right )} \, dx\\ &=9 \int \frac {e^{\frac {1}{x}} \log \left (\frac {1}{3} \left (e^x+x^2\right )\right ) \left (2 \left (5+e^x\right ) x^2 \left (e^x+2 x\right )+\left (-5 x^2+e^{2 x} \left (-1+x^2\right )+e^x \left (-5-x^2+x^4\right )\right ) \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right )}{x^2 \left (e^x+x^2\right )} \, dx\\ &=9 \int \left (\frac {2 e^{\frac {1}{x}} x \left (10-5 x-2 x^2+x^3\right ) \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )}{e^x+x^2}-\frac {e^{\frac {1}{x}} \log \left (\frac {1}{3} \left (e^x+x^2\right )\right ) \left (-10 x^2-4 x^3+2 x^4+5 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right )}{x^2}+\frac {e^{\frac {1}{x}+x} \log \left (\frac {1}{3} \left (e^x+x^2\right )\right ) \left (2 x^2+\log (3)+x^2 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )-\log \left (e^x+x^2\right )\right )}{x^2}\right ) \, dx\\ &=-\left (9 \int \frac {e^{\frac {1}{x}} \log \left (\frac {1}{3} \left (e^x+x^2\right )\right ) \left (-10 x^2-4 x^3+2 x^4+5 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right )}{x^2} \, dx\right )+9 \int \frac {e^{\frac {1}{x}+x} \log \left (\frac {1}{3} \left (e^x+x^2\right )\right ) \left (2 x^2+\log (3)+x^2 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )-\log \left (e^x+x^2\right )\right )}{x^2} \, dx+18 \int \frac {e^{\frac {1}{x}} x \left (10-5 x-2 x^2+x^3\right ) \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )}{e^x+x^2} \, dx\\ &=-\left (9 \int \left (2 e^{\frac {1}{x}} \left (-5-2 x+x^2\right ) \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )+\frac {5 e^{\frac {1}{x}} \log ^2\left (\frac {1}{3} \left (e^x+x^2\right )\right )}{x^2}\right ) \, dx\right )+9 \int \left (\frac {e^{\frac {1}{x}+x} \log \left (\frac {1}{3} \left (e^x+x^2\right )\right ) \left (2 x^2+\log (3)+x^2 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right )}{x^2}-\frac {e^{\frac {1}{x}+x} \log \left (\frac {1}{3} \left (e^x+x^2\right )\right ) \log \left (e^x+x^2\right )}{x^2}\right ) \, dx-18 \int \frac {\left (e^x+2 x\right ) \left (10 \int \frac {e^{\frac {1}{x}} x}{e^x+x^2} \, dx-5 \int \frac {e^{\frac {1}{x}} x^2}{e^x+x^2} \, dx-2 \int \frac {e^{\frac {1}{x}} x^3}{e^x+x^2} \, dx+\int \frac {e^{\frac {1}{x}} x^4}{e^x+x^2} \, dx\right )}{e^x+x^2} \, dx+\left (18 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right ) \int \frac {e^{\frac {1}{x}} x^4}{e^x+x^2} \, dx-\left (36 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right ) \int \frac {e^{\frac {1}{x}} x^3}{e^x+x^2} \, dx-\left (90 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right ) \int \frac {e^{\frac {1}{x}} x^2}{e^x+x^2} \, dx+\left (180 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right ) \int \frac {e^{\frac {1}{x}} x}{e^x+x^2} \, dx\\ &=9 \int \frac {e^{\frac {1}{x}+x} \log \left (\frac {1}{3} \left (e^x+x^2\right )\right ) \left (2 x^2+\log (3)+x^2 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right )}{x^2} \, dx-9 \int \frac {e^{\frac {1}{x}+x} \log \left (\frac {1}{3} \left (e^x+x^2\right )\right ) \log \left (e^x+x^2\right )}{x^2} \, dx-18 \int e^{\frac {1}{x}} \left (-5-2 x+x^2\right ) \log \left (\frac {1}{3} \left (e^x+x^2\right )\right ) \, dx-18 \int \left (10 \int \frac {e^{\frac {1}{x}} x}{e^x+x^2} \, dx-5 \int \frac {e^{\frac {1}{x}} x^2}{e^x+x^2} \, dx-2 \int \frac {e^{\frac {1}{x}} x^3}{e^x+x^2} \, dx+\int \frac {e^{\frac {1}{x}} x^4}{e^x+x^2} \, dx-\frac {(-2+x) x \left (10 \int \frac {e^{\frac {1}{x}} x}{e^x+x^2} \, dx-5 \int \frac {e^{\frac {1}{x}} x^2}{e^x+x^2} \, dx-2 \int \frac {e^{\frac {1}{x}} x^3}{e^x+x^2} \, dx+\int \frac {e^{\frac {1}{x}} x^4}{e^x+x^2} \, dx\right )}{e^x+x^2}\right ) \, dx-45 \int \frac {e^{\frac {1}{x}} \log ^2\left (\frac {1}{3} \left (e^x+x^2\right )\right )}{x^2} \, dx+\left (18 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right ) \int \frac {e^{\frac {1}{x}} x^4}{e^x+x^2} \, dx-\left (36 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right ) \int \frac {e^{\frac {1}{x}} x^3}{e^x+x^2} \, dx-\left (90 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right ) \int \frac {e^{\frac {1}{x}} x^2}{e^x+x^2} \, dx+\left (180 \log \left (\frac {1}{3} \left (e^x+x^2\right )\right )\right ) \int \frac {e^{\frac {1}{x}} x}{e^x+x^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 26, normalized size = 1.00 \begin {gather*} 9 e^{\frac {1}{x}} \left (5+e^x\right ) \log ^2\left (\frac {1}{3} \left (e^x+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 94, normalized size = 3.62 \begin {gather*} 9 \, {\left (e^{\left (\frac {2 \, x^{2} + 1}{x} + \frac {x^{2} + 1}{x}\right )} + 5 \, e^{\left (\frac {2 \, {\left (x^{2} + 1\right )}}{x}\right )}\right )} e^{\left (-\frac {2 \, x^{2} + 1}{x}\right )} \log \left (\frac {1}{3} \, {\left (x^{2} e^{\left (\frac {x^{2} + 1}{x}\right )} + e^{\left (\frac {2 \, x^{2} + 1}{x}\right )}\right )} e^{\left (-\frac {x^{2} + 1}{x}\right )}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.32, size = 24, normalized size = 0.92
method | result | size |
risch | \(9 \left ({\mathrm e}^{x}+5\right ) {\mathrm e}^{\frac {1}{x}} \ln \left (\frac {x^{2}}{3}+\frac {{\mathrm e}^{x}}{3}\right )^{2}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 63, normalized size = 2.42 \begin {gather*} 9 \, {\left (e^{x} + 5\right )} e^{\frac {1}{x}} \log \left (x^{2} + e^{x}\right )^{2} - 18 \, {\left (e^{x} \log \relax (3) + 5 \, \log \relax (3)\right )} e^{\frac {1}{x}} \log \left (x^{2} + e^{x}\right ) + 9 \, {\left (e^{x} \log \relax (3)^{2} + 5 \, \log \relax (3)^{2}\right )} e^{\frac {1}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\ln \left (\frac {{\mathrm {e}}^x}{3}+\frac {x^2}{3}\right )\,\left ({\mathrm {e}}^{x+\frac {1}{x}}\,\left (36\,x^3+90\,x^2\right )+180\,x^3\,{\mathrm {e}}^{1/x}+18\,x^2\,{\mathrm {e}}^{2\,x+\frac {1}{x}}\right )-{\ln \left (\frac {{\mathrm {e}}^x}{3}+\frac {x^2}{3}\right )}^2\,\left ({\mathrm {e}}^{x+\frac {1}{x}}\,\left (-9\,x^4+9\,x^2+45\right )-{\mathrm {e}}^{2\,x+\frac {1}{x}}\,\left (9\,x^2-9\right )+45\,x^2\,{\mathrm {e}}^{1/x}\right )}{x^2\,{\mathrm {e}}^x+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________