Optimal. Leaf size=28 \[ e^{e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}}+x+2 x \log (x) \]
________________________________________________________________________________________
Rubi [F] time = 23.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 \log ^5(x)+2 \log ^6(x)+\exp \left (\exp \left (\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}\right )+\frac {2 x^6-8 x^5 \log (x)+12 x^4 \log ^2(x)-8 x^3 \log ^3(x)+2 x^2 \log ^4(x)}{\log ^4(x)}\right ) \left (-8 x^5+\left (24 x^4+12 x^5\right ) \log (x)+\left (-24 x^3-40 x^4\right ) \log ^2(x)+\left (8 x^2+48 x^3\right ) \log ^3(x)-24 x^2 \log ^4(x)+4 x \log ^5(x)\right )}{\log ^5(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (3+2 \log (x)+\frac {4 \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x (x-\log (x))^3 \left (-2 x+3 x \log (x)-\log ^2(x)\right )}{\log ^5(x)}\right ) \, dx\\ &=3 x+2 \int \log (x) \, dx+4 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x (x-\log (x))^3 \left (-2 x+3 x \log (x)-\log ^2(x)\right )}{\log ^5(x)} \, dx\\ &=x+2 x \log (x)+4 \int \left (\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x-\frac {2 \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^5}{\log ^5(x)}+\frac {3 \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^4 (2+x)}{\log ^4(x)}-\frac {2 \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^3 (3+5 x)}{\log ^3(x)}+\frac {2 \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^2 (1+6 x)}{\log ^2(x)}-\frac {6 \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^2}{\log (x)}\right ) \, dx\\ &=x+2 x \log (x)+4 \int \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x \, dx-8 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^5}{\log ^5(x)} \, dx-8 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^3 (3+5 x)}{\log ^3(x)} \, dx+8 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^2 (1+6 x)}{\log ^2(x)} \, dx+12 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^4 (2+x)}{\log ^4(x)} \, dx-24 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^2}{\log (x)} \, dx\\ &=x+2 x \log (x)+4 \int \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x \, dx-8 \int \left (\frac {3 \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^3}{\log ^3(x)}+\frac {5 \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^4}{\log ^3(x)}\right ) \, dx+8 \int \left (\frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^2}{\log ^2(x)}+\frac {6 \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^3}{\log ^2(x)}\right ) \, dx-8 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^5}{\log ^5(x)} \, dx+12 \int \left (\frac {2 \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^4}{\log ^4(x)}+\frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^5}{\log ^4(x)}\right ) \, dx-24 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^2}{\log (x)} \, dx\\ &=x+2 x \log (x)+4 \int \exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x \, dx-8 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^5}{\log ^5(x)} \, dx+8 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^2}{\log ^2(x)} \, dx+12 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^5}{\log ^4(x)} \, dx+24 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^4}{\log ^4(x)} \, dx-24 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^3}{\log ^3(x)} \, dx-24 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^2}{\log (x)} \, dx-40 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^4}{\log ^3(x)} \, dx+48 \int \frac {\exp \left (e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}+2 x^2+\frac {2 x^6}{\log ^4(x)}-\frac {8 x^5}{\log ^3(x)}+\frac {12 x^4}{\log ^2(x)}-\frac {8 x^3}{\log (x)}\right ) x^3}{\log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 28, normalized size = 1.00 \begin {gather*} e^{e^{\frac {2 x^2 (x-\log (x))^4}{\log ^4(x)}}}+x+2 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 193, normalized size = 6.89 \begin {gather*} {\left ({\left (2 \, x \log \relax (x) + x\right )} e^{\left (\frac {2 \, {\left (x^{6} - 4 \, x^{5} \log \relax (x) + 6 \, x^{4} \log \relax (x)^{2} - 4 \, x^{3} \log \relax (x)^{3} + x^{2} \log \relax (x)^{4}\right )}}{\log \relax (x)^{4}}\right )} + e^{\left (\frac {2 \, x^{6} - 8 \, x^{5} \log \relax (x) + 12 \, x^{4} \log \relax (x)^{2} - 8 \, x^{3} \log \relax (x)^{3} + 2 \, x^{2} \log \relax (x)^{4} + e^{\left (\frac {2 \, {\left (x^{6} - 4 \, x^{5} \log \relax (x) + 6 \, x^{4} \log \relax (x)^{2} - 4 \, x^{3} \log \relax (x)^{3} + x^{2} \log \relax (x)^{4}\right )}}{\log \relax (x)^{4}}\right )} \log \relax (x)^{4}}{\log \relax (x)^{4}}\right )}\right )} e^{\left (-\frac {2 \, {\left (x^{6} - 4 \, x^{5} \log \relax (x) + 6 \, x^{4} \log \relax (x)^{2} - 4 \, x^{3} \log \relax (x)^{3} + x^{2} \log \relax (x)^{4}\right )}}{\log \relax (x)^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 27, normalized size = 0.96
method | result | size |
risch | \(2 x \ln \relax (x )+x +{\mathrm e}^{{\mathrm e}^{\frac {2 x^{2} \left (\ln \relax (x )-x \right )^{4}}{\ln \relax (x )^{4}}}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.10, size = 51, normalized size = 1.82 \begin {gather*} 2 \, x \log \relax (x) + x + e^{\left (e^{\left (2 \, x^{2} + \frac {2 \, x^{6}}{\log \relax (x)^{4}} - \frac {8 \, x^{5}}{\log \relax (x)^{3}} + \frac {12 \, x^{4}}{\log \relax (x)^{2}} - \frac {8 \, x^{3}}{\log \relax (x)}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.30, size = 55, normalized size = 1.96 \begin {gather*} x+{\mathrm {e}}^{{\mathrm {e}}^{2\,x^2}\,{\mathrm {e}}^{-\frac {8\,x^3}{\ln \relax (x)}}\,{\mathrm {e}}^{\frac {2\,x^6}{{\ln \relax (x)}^4}}\,{\mathrm {e}}^{-\frac {8\,x^5}{{\ln \relax (x)}^3}}\,{\mathrm {e}}^{\frac {12\,x^4}{{\ln \relax (x)}^2}}}+2\,x\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.23, size = 60, normalized size = 2.14 \begin {gather*} 2 x \log {\relax (x )} + x + e^{e^{\frac {2 x^{6} - 8 x^{5} \log {\relax (x )} + 12 x^{4} \log {\relax (x )}^{2} - 8 x^{3} \log {\relax (x )}^{3} + 2 x^{2} \log {\relax (x )}^{4}}{\log {\relax (x )}^{4}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________