Optimal. Leaf size=28 \[ \left (\frac {5}{2}+\frac {1}{5} e^x \left (e^{e^{e^{e^{16 x}}}}-x\right )\right ) x \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 34, normalized size of antiderivative = 1.21, number of steps used = 11, number of rules used = 6, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {12, 1593, 2196, 2176, 2194, 2288} \begin {gather*} -\frac {1}{5} e^x x^2+\frac {1}{5} e^{x+e^{e^{e^{16 x}}}} x+\frac {5 x}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{10} \int \left (25+e^x \left (-4 x-2 x^2\right )+e^{e^{e^{e^{16 x}}}} \left (32 e^{e^{e^{16 x}}+e^{16 x}+17 x} x+e^x (2+2 x)\right )\right ) \, dx\\ &=\frac {5 x}{2}+\frac {1}{10} \int e^x \left (-4 x-2 x^2\right ) \, dx+\frac {1}{10} \int e^{e^{e^{e^{16 x}}}} \left (32 e^{e^{e^{16 x}}+e^{16 x}+17 x} x+e^x (2+2 x)\right ) \, dx\\ &=\frac {5 x}{2}+\frac {1}{5} e^{e^{e^{e^{16 x}}}+x} x+\frac {1}{10} \int e^x (-4-2 x) x \, dx\\ &=\frac {5 x}{2}+\frac {1}{5} e^{e^{e^{e^{16 x}}}+x} x+\frac {1}{10} \int \left (-4 e^x x-2 e^x x^2\right ) \, dx\\ &=\frac {5 x}{2}+\frac {1}{5} e^{e^{e^{e^{16 x}}}+x} x-\frac {1}{5} \int e^x x^2 \, dx-\frac {2}{5} \int e^x x \, dx\\ &=\frac {5 x}{2}-\frac {2 e^x x}{5}+\frac {1}{5} e^{e^{e^{e^{16 x}}}+x} x-\frac {e^x x^2}{5}+\frac {2 \int e^x \, dx}{5}+\frac {2}{5} \int e^x x \, dx\\ &=\frac {2 e^x}{5}+\frac {5 x}{2}+\frac {1}{5} e^{e^{e^{e^{16 x}}}+x} x-\frac {e^x x^2}{5}-\frac {2 \int e^x \, dx}{5}\\ &=\frac {5 x}{2}+\frac {1}{5} e^{e^{e^{e^{16 x}}}+x} x-\frac {e^x x^2}{5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 28, normalized size = 1.00 \begin {gather*} -\frac {1}{10} x \left (-25-2 e^{e^{e^{e^{16 x}}}+x}+2 e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 23, normalized size = 0.82 \begin {gather*} -\frac {1}{5} \, x^{2} e^{x} + \frac {1}{5} \, x e^{\left (x + e^{\left (e^{\left (e^{\left (16 \, x\right )}\right )}\right )}\right )} + \frac {5}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {1}{5} \, {\left (x^{2} + 2 \, x\right )} e^{x} + \frac {1}{5} \, {\left (16 \, x e^{\left (17 \, x + e^{\left (16 \, x\right )} + e^{\left (e^{\left (16 \, x\right )}\right )}\right )} + {\left (x + 1\right )} e^{x}\right )} e^{\left (e^{\left (e^{\left (e^{\left (16 \, x\right )}\right )}\right )}\right )} + \frac {5}{2}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 24, normalized size = 0.86
method | result | size |
risch | \(\frac {x \,{\mathrm e}^{x +{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{16 x}}}}}{5}-\frac {{\mathrm e}^{x} x^{2}}{5}+\frac {5 x}{2}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 35, normalized size = 1.25 \begin {gather*} \frac {1}{5} \, x e^{\left (x + e^{\left (e^{\left (e^{\left (16 \, x\right )}\right )}\right )}\right )} - \frac {1}{5} \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} - \frac {2}{5} \, {\left (x - 1\right )} e^{x} + \frac {5}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.07, size = 23, normalized size = 0.82 \begin {gather*} \frac {5\,x}{2}-\frac {x^2\,{\mathrm {e}}^x}{5}+\frac {x\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^{16\,x}}}}\,{\mathrm {e}}^x}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 5.68, size = 29, normalized size = 1.04 \begin {gather*} - \frac {x^{2} e^{x}}{5} + \frac {x e^{x} e^{e^{e^{e^{16 x}}}}}{5} + \frac {5 x}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________