Optimal. Leaf size=25 \[ 6-\frac {3 e^{5+4 e^{-e}}}{10 x}-x+\log (2) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 22, normalized size of antiderivative = 0.88, number of steps used = 3, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {12, 14} \begin {gather*} -x-\frac {3 e^{5+4 e^{-e}}}{10 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{10} \int \frac {3 e^{e^{-e} \left (4+5 e^e\right )}-10 x^2}{x^2} \, dx\\ &=\frac {1}{10} \int \left (-10+\frac {3 e^{5+4 e^{-e}}}{x^2}\right ) \, dx\\ &=-\frac {3 e^{5+4 e^{-e}}}{10 x}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 22, normalized size = 0.88 \begin {gather*} -\frac {3 e^{5+4 e^{-e}}}{10 x}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 27, normalized size = 1.08 \begin {gather*} -\frac {10 \, x^{2} + 3 \, e^{\left ({\left (5 \, e^{e} + 4\right )} e^{\left (-e\right )}\right )}}{10 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 23, normalized size = 0.92 \begin {gather*} -x - \frac {3 \, e^{\left ({\left (5 \, e^{e} + 4\right )} e^{\left (-e\right )}\right )}}{10 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 20, normalized size = 0.80
method | result | size |
risch | \(-x -\frac {3 \,{\mathrm e}^{5+4 \,{\mathrm e}^{-{\mathrm e}}}}{10 x}\) | \(20\) |
default | \(-x -\frac {3 \,{\mathrm e}^{\left (5 \,{\mathrm e}^{{\mathrm e}}+4\right ) {\mathrm e}^{-{\mathrm e}}}}{10 x}\) | \(24\) |
gosper | \(-\frac {10 x^{2}+3 \,{\mathrm e}^{\left (5 \,{\mathrm e}^{{\mathrm e}}+4\right ) {\mathrm e}^{-{\mathrm e}}}}{10 x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 23, normalized size = 0.92 \begin {gather*} -x - \frac {3 \, e^{\left ({\left (5 \, e^{e} + 4\right )} e^{\left (-e\right )}\right )}}{10 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.97, size = 19, normalized size = 0.76 \begin {gather*} -x-\frac {3\,{\mathrm {e}}^{4\,{\mathrm {e}}^{-\mathrm {e}}+5}}{10\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 19, normalized size = 0.76 \begin {gather*} - x - \frac {3 e^{5} e^{\frac {4}{e^{e}}}}{10 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________