Optimal. Leaf size=28 \[ \frac {x+\frac {x^2}{\log ^2\left (\frac {5 e^{-4-8 x}}{x}\right )}}{-3+\log (5)} \]
________________________________________________________________________________________
Rubi [F] time = 0.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x+16 x^2+2 x \log \left (\frac {5 e^{-4-8 x}}{x}\right )+\log ^3\left (\frac {5 e^{-4-8 x}}{x}\right )}{(-3+\log (5)) \log ^3\left (\frac {5 e^{-4-8 x}}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {2 x+16 x^2+2 x \log \left (\frac {5 e^{-4-8 x}}{x}\right )+\log ^3\left (\frac {5 e^{-4-8 x}}{x}\right )}{\log ^3\left (\frac {5 e^{-4-8 x}}{x}\right )} \, dx}{-3+\log (5)}\\ &=\frac {\int \left (1+\frac {2 x (1+8 x)}{\log ^3\left (\frac {5 e^{-4-8 x}}{x}\right )}+\frac {2 x}{\log ^2\left (\frac {5 e^{-4-8 x}}{x}\right )}\right ) \, dx}{-3+\log (5)}\\ &=-\frac {x}{3-\log (5)}-\frac {2 \int \frac {x (1+8 x)}{\log ^3\left (\frac {5 e^{-4-8 x}}{x}\right )} \, dx}{3-\log (5)}-\frac {2 \int \frac {x}{\log ^2\left (\frac {5 e^{-4-8 x}}{x}\right )} \, dx}{3-\log (5)}\\ &=-\frac {x}{3-\log (5)}-\frac {2 \int \left (\frac {x}{\log ^3\left (\frac {5 e^{-4-8 x}}{x}\right )}+\frac {8 x^2}{\log ^3\left (\frac {5 e^{-4-8 x}}{x}\right )}\right ) \, dx}{3-\log (5)}-\frac {2 \int \frac {x}{\log ^2\left (\frac {5 e^{-4-8 x}}{x}\right )} \, dx}{3-\log (5)}\\ &=-\frac {x}{3-\log (5)}-\frac {2 \int \frac {x}{\log ^3\left (\frac {5 e^{-4-8 x}}{x}\right )} \, dx}{3-\log (5)}-\frac {2 \int \frac {x}{\log ^2\left (\frac {5 e^{-4-8 x}}{x}\right )} \, dx}{3-\log (5)}-\frac {16 \int \frac {x^2}{\log ^3\left (\frac {5 e^{-4-8 x}}{x}\right )} \, dx}{3-\log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 28, normalized size = 1.00 \begin {gather*} \frac {x+\frac {x^2}{\log ^2\left (\frac {5 e^{-4-8 x}}{x}\right )}}{-3+\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 41, normalized size = 1.46 \begin {gather*} \frac {x \log \left (\frac {5 \, e^{\left (-8 \, x - 4\right )}}{x}\right )^{2} + x^{2}}{{\left (\log \relax (5) - 3\right )} \log \left (\frac {5 \, e^{\left (-8 \, x - 4\right )}}{x}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 103, normalized size = 3.68 \begin {gather*} \frac {x + \frac {8 \, x^{3} + x^{2}}{512 \, x^{3} - 128 \, x^{2} \log \relax (5) + 8 \, x \log \relax (5)^{2} + 128 \, x^{2} \log \relax (x) - 16 \, x \log \relax (5) \log \relax (x) + 8 \, x \log \relax (x)^{2} + 576 \, x^{2} - 80 \, x \log \relax (5) + \log \relax (5)^{2} + 80 \, x \log \relax (x) - 2 \, \log \relax (5) \log \relax (x) + \log \relax (x)^{2} + 192 \, x - 8 \, \log \relax (5) + 8 \, \log \relax (x) + 16}}{\log \relax (5) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 10.36, size = 169, normalized size = 6.04
method | result | size |
default | \(\frac {x \ln \relax (x )^{2}+\left (1-16 \ln \left (\frac {5 \,{\mathrm e}^{-4} {\mathrm e}^{-8 x}}{x}\right )-16 \ln \relax (x )-128 x \right ) x^{2}+\left (\left (\ln \left (\frac {5 \,{\mathrm e}^{-4} {\mathrm e}^{-8 x}}{x}\right )+\ln \relax (x )+8 \ln \left ({\mathrm e}^{x}\right )\right )^{2}-16 \left (\ln \left ({\mathrm e}^{x}\right )-x \right ) \left (\ln \left (\frac {5 \,{\mathrm e}^{-4} {\mathrm e}^{-8 x}}{x}\right )+\ln \relax (x )+8 \ln \left ({\mathrm e}^{x}\right )\right )+64 \left (\ln \left ({\mathrm e}^{x}\right )-x \right )^{2}\right ) x +\left (-2 \ln \left (\frac {5 \,{\mathrm e}^{-4} {\mathrm e}^{-8 x}}{x}\right )-2 \ln \relax (x )-16 x \right ) x \ln \relax (x )+64 x^{3}+16 x^{2} \ln \relax (x )}{\left (\ln \relax (5)-3\right ) \ln \left (\frac {5 \,{\mathrm e}^{-4} {\mathrm e}^{-8 x}}{x}\right )^{2}}\) | \(169\) |
risch | \(\frac {x}{\ln \relax (5)-3}-\frac {4 x^{2}}{\left (\ln \relax (5)-3\right ) \left (2 i \ln \relax (x )-2 i \ln \relax (5)+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{6 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{7 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{4 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{5 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-8 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-8 x}}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right )+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{7 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{8 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{3 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{3 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{5 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{6 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )+\pi \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )-\pi \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-\pi \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{3 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )^{2}-\pi \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{4 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{5 x}\right )^{2}+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-8 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-8 x}}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{-8 x}}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{6 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{7 x}\right )^{2}-\pi \mathrm {csgn}\left (i {\mathrm e}^{7 x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{7 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{8 x}\right )^{2}-\pi \mathrm {csgn}\left (i {\mathrm e}^{8 x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-\pi \mathrm {csgn}\left (i {\mathrm e}^{5 x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{5 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{6 x}\right )^{2}-\pi \mathrm {csgn}\left (i {\mathrm e}^{6 x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-2 \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}+8 i+16 i \ln \left ({\mathrm e}^{x}\right )+\pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}+\pi \mathrm {csgn}\left (i {\mathrm e}^{5 x}\right )^{3}+\pi \mathrm {csgn}\left (i {\mathrm e}^{6 x}\right )^{3}+\pi \mathrm {csgn}\left (i {\mathrm e}^{7 x}\right )^{3}+\pi \mathrm {csgn}\left (i {\mathrm e}^{8 x}\right )^{3}+\pi \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )^{3}+\pi \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )^{3}-\pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{-8 x}}{x}\right )^{3}\right )^{2}}\) | \(637\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 54, normalized size = 1.93 \begin {gather*} \frac {x + \frac {x^{2}}{64 \, x^{2} - 16 \, x {\left (\log \relax (5) - 4\right )} + \log \relax (5)^{2} + 2 \, {\left (8 \, x - \log \relax (5) + 4\right )} \log \relax (x) + \log \relax (x)^{2} - 8 \, \log \relax (5) + 16}}{\log \relax (5) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.45, size = 33, normalized size = 1.18 \begin {gather*} \frac {x}{\ln \relax (5)-3}+\frac {x^2}{{\ln \left (\frac {5\,{\mathrm {e}}^{-8\,x}\,{\mathrm {e}}^{-4}}{x}\right )}^2\,\left (\ln \relax (5)-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 29, normalized size = 1.04 \begin {gather*} \frac {x^{2}}{\left (-3 + \log {\relax (5 )}\right ) \log {\left (\frac {5 e^{- 8 x}}{x e^{4}} \right )}^{2}} + \frac {x}{-3 + \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________