Optimal. Leaf size=19 \[ e^{-x} x^2 \left (x+x^3 \log (-4+x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.83, antiderivative size = 23, normalized size of antiderivative = 1.21, number of steps used = 39, number of rules used = 7, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.137, Rules used = {6742, 2199, 2194, 2178, 2176, 2196, 2554} \begin {gather*} e^{-x} x^5 \log (x-4)+e^{-x} x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2178
Rule 2194
Rule 2196
Rule 2199
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{-x} x^2 \left (-12+7 x-x^2+x^3\right )}{-4+x}-e^{-x} (-5+x) x^4 \log (-4+x)\right ) \, dx\\ &=\int \frac {e^{-x} x^2 \left (-12+7 x-x^2+x^3\right )}{-4+x} \, dx-\int e^{-x} (-5+x) x^4 \log (-4+x) \, dx\\ &=e^{-x} x^5 \log (-4+x)-\int \frac {e^{-x} x^5}{-4+x} \, dx+\int \left (256 e^{-x}+\frac {1024 e^{-x}}{-4+x}+64 e^{-x} x+19 e^{-x} x^2+3 e^{-x} x^3+e^{-x} x^4\right ) \, dx\\ &=e^{-x} x^5 \log (-4+x)+3 \int e^{-x} x^3 \, dx+19 \int e^{-x} x^2 \, dx+64 \int e^{-x} x \, dx+256 \int e^{-x} \, dx+1024 \int \frac {e^{-x}}{-4+x} \, dx+\int e^{-x} x^4 \, dx-\int \left (256 e^{-x}+\frac {1024 e^{-x}}{-4+x}+64 e^{-x} x+16 e^{-x} x^2+4 e^{-x} x^3+e^{-x} x^4\right ) \, dx\\ &=-256 e^{-x}-64 e^{-x} x-19 e^{-x} x^2-3 e^{-x} x^3-e^{-x} x^4+\frac {1024 \text {Ei}(4-x)}{e^4}+e^{-x} x^5 \log (-4+x)+9 \int e^{-x} x^2 \, dx-16 \int e^{-x} x^2 \, dx+38 \int e^{-x} x \, dx+64 \int e^{-x} \, dx-64 \int e^{-x} x \, dx-256 \int e^{-x} \, dx-1024 \int \frac {e^{-x}}{-4+x} \, dx-\int e^{-x} x^4 \, dx\\ &=-64 e^{-x}-38 e^{-x} x-12 e^{-x} x^2-3 e^{-x} x^3+e^{-x} x^5 \log (-4+x)-4 \int e^{-x} x^3 \, dx+18 \int e^{-x} x \, dx-32 \int e^{-x} x \, dx+38 \int e^{-x} \, dx-64 \int e^{-x} \, dx\\ &=-38 e^{-x}-24 e^{-x} x-12 e^{-x} x^2+e^{-x} x^3+e^{-x} x^5 \log (-4+x)-12 \int e^{-x} x^2 \, dx+18 \int e^{-x} \, dx-32 \int e^{-x} \, dx\\ &=-24 e^{-x}-24 e^{-x} x+e^{-x} x^3+e^{-x} x^5 \log (-4+x)-24 \int e^{-x} x \, dx\\ &=-24 e^{-x}+e^{-x} x^3+e^{-x} x^5 \log (-4+x)-24 \int e^{-x} \, dx\\ &=e^{-x} x^3+e^{-x} x^5 \log (-4+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.79, size = 19, normalized size = 1.00 \begin {gather*} e^{-x} x^3 \left (1+x^2 \log (-4+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 21, normalized size = 1.11 \begin {gather*} x^{5} e^{\left (-x\right )} \log \left (x - 4\right ) + x^{3} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 21, normalized size = 1.11 \begin {gather*} x^{5} e^{\left (-x\right )} \log \left (x - 4\right ) + x^{3} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 22, normalized size = 1.16
method | result | size |
risch | \(x^{5} {\mathrm e}^{-x} \ln \left (x -4\right )+x^{3} {\mathrm e}^{-x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 21, normalized size = 1.11 \begin {gather*} x^{5} e^{\left (-x\right )} \log \left (x - 4\right ) + x^{3} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.41, size = 18, normalized size = 0.95 \begin {gather*} x^3\,{\mathrm {e}}^{-x}\,\left (x^2\,\ln \left (x-4\right )+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 14, normalized size = 0.74 \begin {gather*} \left (x^{5} \log {\left (x - 4 \right )} + x^{3}\right ) e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________