Optimal. Leaf size=26 \[ \frac {x \left (3 x+x \left (x+x^2 \log ^2(x)\right )\right )}{-2 x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 x-7 x^2-4 x^3+\left (6 x+3 x^2-4 x^4\right ) \log (x)+\left (x^3-6 x^4\right ) \log ^2(x)+4 x^3 \log ^3(x)}{4 x^2-4 x \log (x)+\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 x-7 x^2-4 x^3+\left (6 x+3 x^2-4 x^4\right ) \log (x)+\left (x^3-6 x^4\right ) \log ^2(x)+4 x^3 \log ^3(x)}{(2 x-\log (x))^2} \, dx\\ &=\int \left (x^3 (1+10 x)+\frac {x \left (-3+5 x+2 x^2-4 x^4+8 x^5\right )}{(2 x-\log (x))^2}-\frac {3 x \left (2+x+8 x^4\right )}{2 x-\log (x)}+4 x^3 \log (x)\right ) \, dx\\ &=-\left (3 \int \frac {x \left (2+x+8 x^4\right )}{2 x-\log (x)} \, dx\right )+4 \int x^3 \log (x) \, dx+\int x^3 (1+10 x) \, dx+\int \frac {x \left (-3+5 x+2 x^2-4 x^4+8 x^5\right )}{(2 x-\log (x))^2} \, dx\\ &=-\frac {x^4}{4}+x^4 \log (x)-3 \int \left (\frac {2 x}{2 x-\log (x)}+\frac {x^2}{2 x-\log (x)}+\frac {8 x^5}{2 x-\log (x)}\right ) \, dx+\int \left (x^3+10 x^4\right ) \, dx+\int \left (-\frac {3 x}{(2 x-\log (x))^2}+\frac {5 x^2}{(2 x-\log (x))^2}+\frac {2 x^3}{(2 x-\log (x))^2}-\frac {4 x^5}{(2 x-\log (x))^2}+\frac {8 x^6}{(2 x-\log (x))^2}\right ) \, dx\\ &=2 x^5+x^4 \log (x)+2 \int \frac {x^3}{(2 x-\log (x))^2} \, dx-3 \int \frac {x}{(2 x-\log (x))^2} \, dx-3 \int \frac {x^2}{2 x-\log (x)} \, dx-4 \int \frac {x^5}{(2 x-\log (x))^2} \, dx+5 \int \frac {x^2}{(2 x-\log (x))^2} \, dx-6 \int \frac {x}{2 x-\log (x)} \, dx+8 \int \frac {x^6}{(2 x-\log (x))^2} \, dx-24 \int \frac {x^5}{2 x-\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 26, normalized size = 1.00 \begin {gather*} -\frac {x^2 \left (3+x+x^2 \log ^2(x)\right )}{2 x-\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 29, normalized size = 1.12 \begin {gather*} -\frac {x^{4} \log \relax (x)^{2} + x^{3} + 3 \, x^{2}}{2 \, x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 38, normalized size = 1.46 \begin {gather*} 2 \, x^{5} + x^{4} \log \relax (x) - \frac {4 \, x^{6} + x^{3} + 3 \, x^{2}}{2 \, x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 32, normalized size = 1.23
method | result | size |
norman | \(\frac {-3 x^{2}-x^{3}-x^{4} \ln \relax (x )^{2}}{2 x -\ln \relax (x )}\) | \(32\) |
risch | \(2 x^{5}+x^{4} \ln \relax (x )-\frac {\left (4 x^{4}+x +3\right ) x^{2}}{2 x -\ln \relax (x )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 29, normalized size = 1.12 \begin {gather*} -\frac {x^{4} \log \relax (x)^{2} + x^{3} + 3 \, x^{2}}{2 \, x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.16, size = 29, normalized size = 1.12 \begin {gather*} -\frac {x^4\,{\ln \relax (x)}^2+x^3+3\,x^2}{2\,x-\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 31, normalized size = 1.19 \begin {gather*} 2 x^{5} + x^{4} \log {\relax (x )} + \frac {4 x^{6} + x^{3} + 3 x^{2}}{- 2 x + \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________