Optimal. Leaf size=22 \[ \frac {2}{x+\log ^2\left (\frac {\log \left (\left (4+\log \left (\frac {1}{x}\right )\right )^2\right )}{x^4}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 210, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {6688, 6686} \begin {gather*} \frac {2}{\log ^2\left (\frac {\log \left (\left (\log \left (\frac {1}{x}\right )+4\right )^2\right )}{x^4}\right )+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 \left (4+\log \left (\frac {1}{x}\right )\right ) \log \left (\left (4+\log \left (\frac {1}{x}\right )\right )^2\right ) \left (x-8 \log \left (\frac {\log \left (\left (4+\log \left (\frac {1}{x}\right )\right )^2\right )}{x^4}\right )\right )+8 \log \left (\frac {\log \left (\left (4+\log \left (\frac {1}{x}\right )\right )^2\right )}{x^4}\right )}{x \left (4+\log \left (\frac {1}{x}\right )\right ) \log \left (\left (4+\log \left (\frac {1}{x}\right )\right )^2\right ) \left (x+\log ^2\left (\frac {\log \left (\left (4+\log \left (\frac {1}{x}\right )\right )^2\right )}{x^4}\right )\right )^2} \, dx\\ &=\frac {2}{x+\log ^2\left (\frac {\log \left (\left (4+\log \left (\frac {1}{x}\right )\right )^2\right )}{x^4}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 22, normalized size = 1.00 \begin {gather*} \frac {2}{x+\log ^2\left (\frac {\log \left (\left (4+\log \left (\frac {1}{x}\right )\right )^2\right )}{x^4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 28, normalized size = 1.27 \begin {gather*} \frac {2}{\log \left (\frac {\log \left (\log \left (\frac {1}{x}\right )^{2} + 8 \, \log \left (\frac {1}{x}\right ) + 16\right )}{x^{4}}\right )^{2} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (16 \ln \left (\frac {1}{x}\right )+64\right ) \ln \left (\ln \left (\frac {1}{x}\right )^{2}+8 \ln \left (\frac {1}{x}\right )+16\right )+8\right ) \ln \left (\frac {\ln \left (\ln \left (\frac {1}{x}\right )^{2}+8 \ln \left (\frac {1}{x}\right )+16\right )}{x^{4}}\right )+\left (-2 x \ln \left (\frac {1}{x}\right )-8 x \right ) \ln \left (\ln \left (\frac {1}{x}\right )^{2}+8 \ln \left (\frac {1}{x}\right )+16\right )}{\left (x \ln \left (\frac {1}{x}\right )+4 x \right ) \ln \left (\ln \left (\frac {1}{x}\right )^{2}+8 \ln \left (\frac {1}{x}\right )+16\right ) \ln \left (\frac {\ln \left (\ln \left (\frac {1}{x}\right )^{2}+8 \ln \left (\frac {1}{x}\right )+16\right )}{x^{4}}\right )^{4}+\left (2 x^{2} \ln \left (\frac {1}{x}\right )+8 x^{2}\right ) \ln \left (\ln \left (\frac {1}{x}\right )^{2}+8 \ln \left (\frac {1}{x}\right )+16\right ) \ln \left (\frac {\ln \left (\ln \left (\frac {1}{x}\right )^{2}+8 \ln \left (\frac {1}{x}\right )+16\right )}{x^{4}}\right )^{2}+\left (x^{3} \ln \left (\frac {1}{x}\right )+4 x^{3}\right ) \ln \left (\ln \left (\frac {1}{x}\right )^{2}+8 \ln \left (\frac {1}{x}\right )+16\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 45, normalized size = 2.05 \begin {gather*} \frac {2}{\log \relax (2)^{2} - 8 \, \log \relax (2) \log \relax (x) + 16 \, \log \relax (x)^{2} + 2 \, {\left (\log \relax (2) - 4 \, \log \relax (x)\right )} \log \left (\log \left (\log \relax (x) - 4\right )\right ) + \log \left (\log \left (\log \relax (x) - 4\right )\right )^{2} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.15, size = 28, normalized size = 1.27 \begin {gather*} \frac {2}{{\ln \left (\frac {\ln \left ({\ln \left (\frac {1}{x}\right )}^2+8\,\ln \left (\frac {1}{x}\right )+16\right )}{x^4}\right )}^2+x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 26, normalized size = 1.18 \begin {gather*} \frac {2}{x + \log {\left (\frac {\log {\left (\log {\left (\frac {1}{x} \right )}^{2} + 8 \log {\left (\frac {1}{x} \right )} + 16 \right )}}{x^{4}} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________